Spaces:
Build error
Build error
import os | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from nets.spg.vqvae_modules import VectorQuantizerEMA, ConvNormRelu, Res_CNR_Stack | |
from nets.spg.vqvae_1d import AudioEncoder | |
class EncoderSC(nn.Module): | |
def __init__(self, in_dim, embedding_dim, num_hiddens, num_residual_layers, num_residual_hiddens): | |
super(EncoderSC, self).__init__() | |
self._num_hiddens = num_hiddens | |
self._num_residual_layers = num_residual_layers | |
self._num_residual_hiddens = num_residual_hiddens | |
self.project = ConvNormRelu(in_dim, self._num_hiddens // 4, leaky=True) | |
self._enc_1 = Res_CNR_Stack(self._num_hiddens // 4, self._num_residual_layers, leaky=True) | |
self._down_1 = ConvNormRelu(self._num_hiddens // 4, self._num_hiddens // 2, leaky=True, residual=True, | |
sample='down') | |
self._enc_2 = Res_CNR_Stack(self._num_hiddens // 2, self._num_residual_layers, leaky=True) | |
self._down_2 = ConvNormRelu(self._num_hiddens // 2, self._num_hiddens, leaky=True, residual=True, sample='down') | |
self._enc_3 = Res_CNR_Stack(self._num_hiddens, self._num_residual_layers, leaky=True) | |
self.pre_vq_conv = nn.Conv1d(self._num_hiddens, embedding_dim, 1, 1) | |
def forward(self, x): | |
out = [] | |
h = self.project(x) | |
h = self._enc_1(h) | |
out[1] = h | |
h = self._down_1(h) | |
h = self._enc_2(h) | |
out[2] = h | |
h = self._down_2(h) | |
h = self._enc_3(h) | |
out[3] = h | |
h = self.pre_vq_conv(h) | |
return h, out | |
class DecoderSC(nn.Module): | |
def __init__(self, out_dim, embedding_dim, num_hiddens, num_residual_layers, num_residual_hiddens, ae=False): | |
super(DecoderSC, self).__init__() | |
self._num_hiddens = num_hiddens | |
self._num_residual_layers = num_residual_layers | |
self._num_residual_hiddens = num_residual_hiddens | |
self.aft_vq_conv = nn.Conv1d(embedding_dim, self._num_hiddens, 1, 1) | |
self._dec_1 = Res_CNR_Stack(self._num_hiddens, self._num_residual_layers, leaky=True) | |
self._up_2 = ConvNormRelu(self._num_hiddens, self._num_hiddens // 2, leaky=True, residual=True, sample='up') | |
self._dec_2 = Res_CNR_Stack(self._num_hiddens // 2, self._num_residual_layers, leaky=True) | |
self._up_3 = ConvNormRelu(self._num_hiddens // 2, self._num_hiddens // 4, leaky=True, residual=True, | |
sample='up') | |
self._dec_3 = Res_CNR_Stack(self._num_hiddens // 4, self._num_residual_layers, leaky=True) | |
self.project = nn.Conv1d(self._num_hiddens // 4, out_dim, 1, 1) | |
def forward(self, h, out): | |
h = self.aft_vq_conv(h) | |
h = h + out[3] | |
h = self._dec_1(h) | |
h = self._up_2(h) | |
h = h + out[2] | |
h = self._dec_2(h) | |
h = self._up_3(h) | |
h = h + out[1] | |
h = self._dec_3(h) | |
recon = self.project(h) | |
return recon | |
class VQVAE_SC(nn.Module): | |
"""VQ-VAE""" | |
def __init__(self, in_dim, embedding_dim, num_embeddings, | |
num_hiddens, num_residual_layers, num_residual_hiddens, | |
commitment_cost=0.25, decay=0.99, share=False): | |
super().__init__() | |
self.in_dim = in_dim | |
self.embedding_dim = embedding_dim | |
self.num_embeddings = num_embeddings | |
self.encoder = EncoderSC(in_dim, embedding_dim, num_hiddens, num_residual_layers, num_residual_hiddens) | |
self.vq_layer = VectorQuantizerEMA(embedding_dim, num_embeddings, commitment_cost, decay) | |
self.decoder = DecoderSC(in_dim, embedding_dim, num_hiddens, num_residual_layers, num_residual_hiddens) | |
def encode(self, gt_poses): | |
z, enc_feats = self.encoder(gt_poses.transpose(1, 2)) | |
return z, enc_feats | |
def decode(self, z, enc_feats): | |
e, e_q_loss = self.vq_layer(z) | |
x = self.decoder(e, enc_feats) | |
return e, e_q_loss, x.transpose(1, 2) | |