fbrynpk's picture
Training and Saving the models
75e181a
raw
history blame
11.7 kB
import tensorflow as tf
import os
import json
import pandas as pd
import re
import numpy as np
import time
import matplotlib.pyplot as plt
import collections
import random
import requests
import json
import pickle
from math import sqrt
from PIL import Image
from tqdm.auto import tqdm
DATASET_PATH = './coco2017/'
MAX_LENGTH = 40
MAX_VOCABULARY = 12000
BATCH_SIZE = 64
BUFFER_SIZE = 1000
EMBEDDING_DIM = 512
UNITS = 512
EPOCHS = 5
with open(f'{DATASET_PATH}/annotations/captions_train2017.json', 'r') as f:
data = json.load(f)
data = data['annotations']
img_cap_pairs = []
for sample in data:
img_name = '%012d.jpg' % sample['image_id']
img_cap_pairs.append([img_name, sample['caption']])
captions = pd.DataFrame(img_cap_pairs, columns=['image', 'caption'])
captions['image'] = captions['image'].apply(
lambda x: f'{DATASET_PATH}/train2017/{x}'
)
captions = captions.sample(70000)
captions = captions.reset_index(drop=True)
captions.head()
def preprocessing(text):
text = text.lower()
text = re.sub(r'[^\w\s]', '', text)
text = re.sub('\s+', ' ', text)
text = text.strip()
text = '[start] ' + text + ' [end]'
return text
captions['caption'] = captions['caption'].apply(preprocessing)
captions.head()
tokenizer = tf.keras.layers.TextVectorization(
max_tokens=MAX_VOCABULARY,
standardize=None,
output_sequence_length=MAX_LENGTH)
tokenizer.adapt(captions['caption'])
pickle.dump(tokenizer.get_vocabulary(), open('./image-caption-generator/vocabulary/vocab_coco.file', 'wb'))
word2idx = tf.keras.layers.StringLookup(
mask_token = "",
vocabulary = tokenizer.get_vocabulary()
)
idx2word = tf.keras.layers.StringLookup(
mask_token = "",
vocabulary = tokenizer.get_vocabulary(),
invert = True
)
img_to_cap_vector = collections.defaultdict(list)
for img, cap in zip(captions['image'], captions['caption']):
img_to_cap_vector[img].append(cap)
img_keys = list(img_to_cap_vector.keys())
random.shuffle(img_keys)
slice_index = int(len(img_keys)*0.8)
img_name_train_keys, img_name_test_keys = (img_keys[:slice_index], img_keys[slice_index:])
train_img = []
train_caption = []
for imgt in img_name_train_keys:
capt_len = len(img_to_cap_vector[imgt])
train_img.extend([imgt]*capt_len)
train_caption.extend(img_to_cap_vector[imgt])
test_img = []
test_caption = []
for imgtest in img_name_test_keys:
capv_len = len(img_to_cap_vector[imgtest])
test_img.extend([imgtest]*capv_len)
test_caption.extend(img_to_cap_vector[imgtest])
len(train_img), len(train_caption), len(test_img), len(test_caption)
def load_data(img_path, caption):
img = tf.io.read_file(img_path)
img = tf.io.decode_jpeg(img, channels=3)
img = tf.keras.layers.Resizing(299, 299)(img)
img = tf.keras.applications.inception_v3.preprocess_input(img)
caption = tokenizer(caption)
return img, caption
train_dataset = tf.data.Dataset.from_tensor_slices((train_img,train_caption))
train_dataset = train_dataset.map(load_data, num_parallel_calls = tf.data.AUTOTUNE).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
test_dataset = tf.data.Dataset.from_tensor_slices((test_img,test_caption))
test_dataset = test_dataset.map(load_data, num_parallel_calls=tf.data.AUTOTUNE).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
image_augmentation = tf.keras.Sequential(
[
tf.keras.layers.RandomFlip("horizontal"),
tf.keras.layers.RandomRotation(0.2),
tf.keras.layers.RandomContrast(0.3),
]
)
def CNN_Encoder():
inception_v3 = tf.keras.applications.InceptionV3(
include_top=False,
weights='imagenet'
)
output = inception_v3.output
output = tf.keras.layers.Reshape(
(-1, output.shape[-1]))(output)
cnn_model = tf.keras.models.Model(inception_v3.input, output)
return cnn_model
class TransformerEncoderLayer(tf.keras.layers.Layer):
def __init__(self, embed_dim, num_heads):
super().__init__()
self.layer_norm_1 = tf.keras.layers.LayerNormalization()
self.layer_norm_2 = tf.keras.layers.LayerNormalization()
self.attention = tf.keras.layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim)
self.dense = tf.keras.layers.Dense(embed_dim, activation="relu")
def call(self, x, training):
x = self.layer_norm_1(x)
x = self.dense(x)
attn_output = self.attention(
query=x,
value=x,
key=x,
attention_mask=None,
training=training
)
x = self.layer_norm_2(x + attn_output)
return x
class Embeddings(tf.keras.layers.Layer):
def __init__(self, vocab_size, embed_dim, max_len):
super().__init__()
self.token_embeddings = tf.keras.layers.Embedding(
vocab_size, embed_dim)
self.position_embeddings = tf.keras.layers.Embedding(
max_len, embed_dim, input_shape=(None, max_len))
def call(self, input_ids):
length = tf.shape(input_ids)[-1]
position_ids = tf.range(start=0, limit=length, delta=1)
position_ids = tf.expand_dims(position_ids, axis=0)
token_embeddings = self.token_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
return token_embeddings + position_embeddings
class TransformerDecoderLayer(tf.keras.layers.Layer):
def __init__(self, embed_dim, units, num_heads):
super().__init__()
self.embedding = Embeddings(
tokenizer.vocabulary_size(), embed_dim, MAX_LENGTH)
self.attention_1 = tf.keras.layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim, dropout=0.1
)
self.attention_2 = tf.keras.layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim, dropout=0.1
)
self.layernorm_1 = tf.keras.layers.LayerNormalization()
self.layernorm_2 = tf.keras.layers.LayerNormalization()
self.layernorm_3 = tf.keras.layers.LayerNormalization()
self.ffn_layer_1 = tf.keras.layers.Dense(units, activation="relu")
self.ffn_layer_2 = tf.keras.layers.Dense(embed_dim)
self.out = tf.keras.layers.Dense(tokenizer.vocabulary_size(), activation="softmax")
self.dropout_1 = tf.keras.layers.Dropout(0.3)
self.dropout_2 = tf.keras.layers.Dropout(0.5)
def call(self, input_ids, encoder_output, training, mask=None):
embeddings = self.embedding(input_ids)
combined_mask = None
padding_mask = None
if mask is not None:
causal_mask = self.get_causal_attention_mask(embeddings)
padding_mask = tf.cast(mask[:, :, tf.newaxis], dtype=tf.int32)
combined_mask = tf.cast(mask[:, tf.newaxis, :], dtype=tf.int32)
combined_mask = tf.minimum(combined_mask, causal_mask)
attn_output_1 = self.attention_1(
query=embeddings,
value=embeddings,
key=embeddings,
attention_mask=combined_mask,
training=training
)
out_1 = self.layernorm_1(embeddings + attn_output_1)
attn_output_2 = self.attention_2(
query=out_1,
value=encoder_output,
key=encoder_output,
attention_mask=padding_mask,
training=training
)
out_2 = self.layernorm_2(out_1 + attn_output_2)
ffn_out = self.ffn_layer_1(out_2)
ffn_out = self.dropout_1(ffn_out, training=training)
ffn_out = self.ffn_layer_2(ffn_out)
ffn_out = self.layernorm_3(ffn_out + out_2)
ffn_out = self.dropout_2(ffn_out, training=training)
preds = self.out(ffn_out)
return preds
def get_causal_attention_mask(self, inputs):
input_shape = tf.shape(inputs)
batch_size, sequence_length = input_shape[0], input_shape[1]
i = tf.range(sequence_length)[:, tf.newaxis]
j = tf.range(sequence_length)
mask = tf.cast(i >= j, dtype="int32")
mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
mult = tf.concat(
[tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)],
axis=0
)
return tf.tile(mask, mult)
class ImageCaptioningModel(tf.keras.Model):
def __init__(self, cnn_model, encoder, decoder, image_aug=None):
super().__init__()
self.cnn_model = cnn_model
self.encoder = encoder
self.decoder = decoder
self.image_aug = image_aug
self.loss_tracker = tf.keras.metrics.Mean(name="loss")
self.acc_tracker = tf.keras.metrics.Mean(name="accuracy")
def calculate_loss(self, y_true, y_pred, mask):
loss = self.loss(y_true, y_pred)
mask = tf.cast(mask, dtype=loss.dtype)
loss *= mask
return tf.reduce_sum(loss) / tf.reduce_sum(mask)
def calculate_accuracy(self, y_true, y_pred, mask):
accuracy = tf.equal(y_true, tf.argmax(y_pred, axis=2))
accuracy = tf.math.logical_and(mask, accuracy)
accuracy = tf.cast(accuracy, dtype=tf.float32)
mask = tf.cast(mask, dtype=tf.float32)
return tf.reduce_sum(accuracy) / tf.reduce_sum(mask)
def compute_loss_and_acc(self, img_embed, captions, training=True):
encoder_output = self.encoder(img_embed, training=True)
y_input = captions[:, :-1]
y_true = captions[:, 1:]
mask = (y_true != 0)
y_pred = self.decoder(
y_input, encoder_output, training=True, mask=mask
)
loss = self.calculate_loss(y_true, y_pred, mask)
acc = self.calculate_accuracy(y_true, y_pred, mask)
return loss, acc
def train_step(self, batch):
imgs, captions = batch
if self.image_aug:
imgs = self.image_aug(imgs)
img_embed = self.cnn_model(imgs)
with tf.GradientTape() as tape:
loss, acc = self.compute_loss_and_acc(
img_embed, captions
)
train_vars = (
self.encoder.trainable_variables + self.decoder.trainable_variables
)
grads = tape.gradient(loss, train_vars)
self.optimizer.apply_gradients(zip(grads, train_vars))
self.loss_tracker.update_state(loss)
self.acc_tracker.update_state(acc)
return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}
def test_step(self, batch):
imgs, captions = batch
img_embed = self.cnn_model(imgs)
loss, acc = self.compute_loss_and_acc(
img_embed, captions, training=False
)
self.loss_tracker.update_state(loss)
self.acc_tracker.update_state(acc)
return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}
@property
def metrics(self):
return [self.loss_tracker, self.acc_tracker]
encoder = TransformerEncoderLayer(EMBEDDING_DIM, 1)
decoder = TransformerDecoderLayer(EMBEDDING_DIM, UNITS, 8)
cnn_model = CNN_Encoder()
caption_model = ImageCaptioningModel(
cnn_model=cnn_model, encoder=encoder, decoder=decoder, image_aug=image_augmentation,
)
cross_entropy = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=False, reduction="none"
)
early_stopping = tf.keras.callbacks.EarlyStopping(patience=3, restore_best_weights=True)
caption_model.compile(
optimizer=tf.keras.optimizers.Adam(),
loss=cross_entropy
)
history = caption_model.fit(
train_dataset,
epochs=EPOCHS,
validation_data=val_dataset,
callbacks=[early_stopping]
)
caption_model.save_weights('./image-caption-generator/models/trained_coco_weights.h5')