farmax commited on
Commit
93068c0
1 Parent(s): ab26ada

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +59 -300
app.py CHANGED
@@ -1,281 +1,94 @@
1
  import gradio as gr
2
  import os
3
-
4
  from langchain_community.document_loaders import PyPDFLoader
5
  from langchain.text_splitter import RecursiveCharacterTextSplitter
6
  from langchain_community.vectorstores import Chroma
7
  from langchain.chains import ConversationalRetrievalChain
8
  from langchain_community.embeddings import HuggingFaceEmbeddings
9
- from langchain_community.llms import HuggingFacePipeline
10
- from langchain.chains import ConversationChain
11
- from langchain.memory import ConversationBufferMemory
12
  from langchain_community.llms import HuggingFaceEndpoint
13
-
14
  from pathlib import Path
15
  import chromadb
16
  from unidecode import unidecode
17
-
18
- from transformers import AutoTokenizer
19
- import transformers
20
- import torch
21
- import tqdm
22
- import accelerate
23
  import re
24
- # from chromadb.utils import get_default_config
25
- vector_db = ''
26
 
27
- # default_persist_directory = './chroma_HF/'
28
- list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
29
- "google/gemma-7b-it","google/gemma-2b-it", \
30
- "HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", \
31
- "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", \
32
- "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", \
33
- "google/flan-t5-xxl"
34
  ]
35
  list_llm_simple = [os.path.basename(llm) for llm in list_llm]
36
 
37
- # Load PDF document and create doc splits
38
  def load_doc(list_file_path, chunk_size, chunk_overlap):
39
- # Processing for one document only
40
- # loader = PyPDFLoader(file_path)
41
- # pages = loader.load()
42
  loaders = [PyPDFLoader(x) for x in list_file_path]
43
  pages = []
44
  for loader in loaders:
45
  pages.extend(loader.load())
46
- # text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
47
- text_splitter = RecursiveCharacterTextSplitter(
48
- chunk_size = chunk_size,
49
- chunk_overlap = chunk_overlap)
50
- doc_splits = text_splitter.split_documents(pages)
51
- return doc_splits
52
-
53
 
54
- # Create vector database
55
  def create_db(splits, collection_name):
56
  embedding = HuggingFaceEmbeddings()
57
  new_client = chromadb.EphemeralClient()
58
- vectordb = Chroma.from_documents(
59
- documents=splits,
60
- embedding=embedding,
61
- client=new_client,
62
- collection_name=collection_name,
63
- # persist_directory=default_persist_directory
64
- )
65
- return vectordb
66
-
67
 
68
- # Load vector database
69
- def load_db():
70
- embedding = HuggingFaceEmbeddings()
71
- vectordb = Chroma(
72
- # persist_directory=default_persist_directory,
73
- embedding_function=embedding)
74
- return vectordb
75
-
76
- # Initialize langchain LLM chain
77
  def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
78
- progress(0.1, desc="Initializing HF tokenizer...")
79
- # HuggingFacePipeline uses local model
80
- # Note: it will download model locally...
81
- # tokenizer=AutoTokenizer.from_pretrained(llm_model)
82
- # progress(0.5, desc="Initializing HF pipeline...")
83
- # pipeline=transformers.pipeline(
84
- # "text-generation",
85
- # model=llm_model,
86
- # tokenizer=tokenizer,
87
- # torch_dtype=torch.bfloat16,
88
- # trust_remote_code=True,
89
- # device_map="auto",
90
- # # max_length=1024,
91
- # max_new_tokens=max_tokens,
92
- # do_sample=True,
93
- # top_k=top_k,
94
- # num_return_sequences=1,
95
- # eos_token_id=tokenizer.eos_token_id
96
- # )
97
- # llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
98
-
99
- # HuggingFaceHub uses HF inference endpoints
100
  progress(0.5, desc="Initializing HF Hub...")
101
- # Use of trust_remote_code as model_kwargs
102
- # Warning: langchain issue
103
- # URL: https://github.com/langchain-ai/langchain/issues/6080
104
- if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
105
- llm = HuggingFaceEndpoint(
106
- repo_id=llm_model,
107
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
108
- temperature = temperature,
109
- max_new_tokens = max_tokens,
110
- top_k = top_k,
111
- load_in_8bit = True,
112
- )
113
- elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1","mosaicml/mpt-7b-instruct"]:
114
- raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
115
- llm = HuggingFaceEndpoint(
116
- repo_id=llm_model,
117
- temperature = temperature,
118
- max_new_tokens = max_tokens,
119
- top_k = top_k,
120
- )
121
- elif llm_model == "microsoft/phi-2":
122
- # raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
123
- llm = HuggingFaceEndpoint(
124
- repo_id=llm_model,
125
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
126
- temperature = temperature,
127
- max_new_tokens = max_tokens,
128
- top_k = top_k,
129
- trust_remote_code = True,
130
- torch_dtype = "auto",
131
- )
132
- elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
133
- llm = HuggingFaceEndpoint(
134
- repo_id=llm_model,
135
- # model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
136
- temperature = temperature,
137
- max_new_tokens = 250,
138
- top_k = top_k,
139
- )
140
- elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
141
- raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
142
- llm = HuggingFaceEndpoint(
143
- repo_id=llm_model,
144
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
145
- temperature = temperature,
146
- max_new_tokens = max_tokens,
147
- top_k = top_k,
148
- )
149
- else:
150
- llm = HuggingFaceEndpoint(
151
- repo_id=llm_model,
152
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
153
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
154
- temperature = temperature,
155
- max_new_tokens = max_tokens,
156
- top_k = top_k,
157
- )
158
-
159
- progress(0.75, desc="Defining buffer memory...")
160
- memory = ConversationBufferMemory(
161
- memory_key="chat_history",
162
- output_key='answer',
163
- return_messages=True
164
  )
165
- # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
166
- retriever=vector_db.as_retriever()
167
- progress(0.8, desc="Defining retrieval chain...")
168
- qa_chain = ConversationalRetrievalChain.from_llm(
 
169
  llm,
170
  retriever=retriever,
171
  chain_type="stuff",
172
  memory=memory,
173
- # combine_docs_chain_kwargs={"prompt": your_prompt})
174
  return_source_documents=True,
175
- #return_generated_question=False,
176
  verbose=False,
177
  )
178
- progress(0.9, desc="Done!")
179
- return qa_chain
180
-
181
 
182
- # Generate collection name for vector database
183
- # - Use filepath as input, ensuring unicode text
184
  def create_collection_name(filepath):
185
- # Extract filename without extension
186
  collection_name = Path(filepath).stem
187
- # Fix potential issues from naming convention
188
- ## Remove space
189
- collection_name = collection_name.replace(" ","-")
190
- ## ASCII transliterations of Unicode text
191
- collection_name = unidecode(collection_name)
192
- ## Remove special characters
193
- #collection_name = re.findall("[\dA-Za-z]*", collection_name)[0]
194
- collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
195
- ## Limit length to 50 characters
196
- collection_name = collection_name[:50]
197
- ## Minimum length of 3 characters
198
  if len(collection_name) < 3:
199
- collection_name = collection_name + 'xyz'
200
- ## Enforce start and end as alphanumeric character
201
  if not collection_name[0].isalnum():
202
  collection_name = 'A' + collection_name[1:]
203
  if not collection_name[-1].isalnum():
204
  collection_name = collection_name[:-1] + 'Z'
205
- print('Filepath: ', filepath)
206
- print('Collection name: ', collection_name)
207
  return collection_name
208
 
209
- # Initialize database
210
  def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
211
- # Create list of documents (when valid)
212
  list_file_path = [x.name for x in list_file_obj if x is not None]
213
- print(list_file_path)
214
- # Create collection_name for vector database
215
- progress(0.1, desc="Creazione collezione...")
216
  collection_name = create_collection_name(list_file_path[0])
217
- progress(0.25, desc="Caricamento documenti..")
218
- # Load document and create splits
219
  doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
220
-
221
- # Creare o caricare il nuovo database
222
- progress(0.5, desc="Generazione vector database...")
223
  vector_db = create_db(doc_splits, collection_name)
224
- progress(0.9, desc="Fatto!")
225
-
226
- return vector_db, collection_name, "Completato!"
227
 
228
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
229
- # print("llm_option",llm_option)
230
  llm_name = list_llm[llm_option]
231
- print(f"Nome del modello: {llm_name}")
232
-
233
  qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
234
-
235
- return qa_chain, "Completato!"
236
 
237
  def format_chat_history(message, chat_history):
238
- formatted_chat_history = []
239
- for user_message, bot_message in chat_history:
240
- formatted_chat_history.append(f"User: {user_message}")
241
- formatted_chat_history.append(f"Assistant: {bot_message}")
242
- return formatted_chat_history
243
-
244
 
245
  def conversation(qa_chain, message, history):
246
  formatted_chat_history = format_chat_history(message, history)
247
- print("formatted_chat_history",formatted_chat_history)
248
-
249
- # Generate response using QA chain
250
  response = qa_chain({"question": message, "chat_history": formatted_chat_history})
251
- response_answer = response["answer"]
252
- if response_answer.find("Helpful Answer:") != -1:
253
- response_answer = response_answer.split("Helpful Answer:")[-1]
254
  response_sources = response["source_documents"]
255
- response_source1 = response_sources[0].page_content.strip()
256
- response_source2 = response_sources[1].page_content.strip()
257
- response_source3 = response_sources[2].page_content.strip()
258
- # Langchain sources are zero-based
259
- response_source1_page = response_sources[0].metadata["page"] + 1
260
- response_source2_page = response_sources[1].metadata["page"] + 1
261
- response_source3_page = response_sources[2].metadata["page"] + 1
262
- #print('chat response: ', response_answer)
263
- #print('DB source', response_sources)
264
-
265
- # Append user message and response to chat history
266
  new_history = history + [(message, response_answer)]
267
- # return gr.update(value=""), new_history, response_sources[0], response_sources[1]
268
- return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
269
-
270
-
271
- def upload_file(file_obj):
272
- list_file_path = []
273
- for idx, file in enumerate(file_obj):
274
- file_path = file_obj.name
275
- list_file_path.append(file_path)
276
- print(file_path)
277
- # initialize_database(file_path, progress)
278
- return list_file_path
279
 
280
  def demo():
281
  with gr.Blocks(theme="base") as demo:
@@ -283,99 +96,45 @@ def demo():
283
  qa_chain = gr.State()
284
  collection_name = gr.State()
285
 
286
- gr.Markdown(
287
- """<center><h2>Creatore di chatbot basato su PDF</center></h2>
288
- <h3>Potete fare domande su i vostri documenti PDF</h3>""")
289
-
290
- gr.Markdown(
291
- """<b>Nota:</b> Questo assistente IA, utilizzando Langchain e modelli LLM open source, esegue generazione aumentata da recupero (RAG) dai vostri documenti PDF. \
292
- L'interfaccia utente esplicitamente mostra i passaggi multipli per aiutare a comprendere il flusso di lavoro RAG.
293
- Questo chatbot tiene conto delle domande passate nel generare le risposte (tramite memoria conversazionale), e include riferimenti ai documenti per scopi di chiarezza.<br>
294
- <br><b>Avviso:</b> Questo spazio utilizza l'hardware di base CPU gratuito da Hugging Face. Alcuni passaggi e modelli LLM usati qui sotto (endpoint di inferenza gratuiti) possono richiedere del tempo per generare una risposta.
295
- """)
296
 
297
- with gr.Tab("Step 1 - Carica PDFs"):
298
- with gr.Row():
299
- document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
300
- # upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
301
 
302
- with gr.Tab("Step 2 - Processa i documenti"):
303
- with gr.Row():
304
- db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
305
- with gr.Accordion("Opzioni Avanzate - Document text splitter", open=False):
306
- with gr.Row():
307
- slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=1000, step=20, label="Chunk size", info="Chunk size", interactive=True)
308
- with gr.Row():
309
- slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=100, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
310
- with gr.Row():
311
- db_progress = gr.Textbox(label="Vector database initialization", value="None")
312
- with gr.Row():
313
- db_btn = gr.Button("Genera vector database")
314
 
315
- with gr.Tab("Step 3 - Inizializza QA chain"):
316
- with gr.Row():
317
- llm_btn = gr.Radio(list_llm_simple, \
318
- label="LLM models", value = list_llm_simple[5], type="index", info="Scegli il tuo modello LLM")
319
  with gr.Accordion("Advanced options - LLM model", open=False):
320
- with gr.Row():
321
- slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.3, step=0.1, label="Temperature", info="Model temperature", interactive=True)
322
- with gr.Row():
323
- slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
324
- with gr.Row():
325
- slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
326
- with gr.Row():
327
- language_btn = gr.Radio(["Italian", "English"], label="Linua", value="Italian", type="index", info="Seleziona la lingua per il chatbot")
328
- with gr.Row():
329
- llm_progress = gr.Textbox(value="None",label="QA chain initialization")
330
- with gr.Row():
331
- qachain_btn = gr.Button("Inizializza Question Answering chain")
332
 
333
-
334
- with gr.Tab("Passo 4 - Chatbot"):
335
  chatbot = gr.Chatbot(height=300)
336
- with gr.Accordion("Opzioni avanzate - Riferimenti ai documenti", open=False):
337
- with gr.Row():
338
- doc_source1 = gr.Textbox(label="Riferimento 1", lines=2, container=True, scale=20)
339
- source1_page = gr.Number(label="Pagina", scale=1)
340
- with gr.Row():
341
- doc_source2 = gr.Textbox(label="Riferimento 2", lines=2, container=True, scale=20)
342
- source2_page = gr.Number(label="Pagina", scale=1)
343
- with gr.Row():
344
- doc_source3 = gr.Textbox(label="Riferimento 3", lines=2, container=True, scale=20)
345
- source3_page = gr.Number(label="Pagina", scale=1)
346
- with gr.Row():
347
- msg = gr.Textbox(placeholder="Inserisci messaggio (es. 'Di cosa tratta questo documento?')", container=True)
348
- with gr.Row():
349
- submit_btn = gr.Button("Invia messaggio")
350
- clear_btn = gr.ClearButton([msg, chatbot], value="Cancella conversazione")
351
 
352
- # Preprocessing events
353
- #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
354
- db_btn.click(initialize_database, \
355
- inputs=[document, slider_chunk_size, slider_chunk_overlap], \
356
- outputs=[vector_db, collection_name, db_progress])
357
- qachain_btn.click(initialize_LLM, \
358
- inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
359
- outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
360
- inputs=None, \
361
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
362
- queue=False)
363
-
364
- # Chatbot events
365
- msg.submit(conversation, \
366
- inputs=[qa_chain, msg, chatbot], \
367
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
368
- queue=False)
369
- submit_btn.click(conversation, \
370
- inputs=[qa_chain, msg, chatbot], \
371
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
372
- queue=False)
373
- clear_btn.click(lambda:[None,"",0,"",0,"",0], \
374
- inputs=None, \
375
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
376
- queue=False)
377
  demo.queue().launch(debug=True)
378
 
379
-
380
  if __name__ == "__main__":
381
  demo()
 
1
  import gradio as gr
2
  import os
 
3
  from langchain_community.document_loaders import PyPDFLoader
4
  from langchain.text_splitter import RecursiveCharacterTextSplitter
5
  from langchain_community.vectorstores import Chroma
6
  from langchain.chains import ConversationalRetrievalChain
7
  from langchain_community.embeddings import HuggingFaceEmbeddings
 
 
 
8
  from langchain_community.llms import HuggingFaceEndpoint
9
+ from langchain.memory import ConversationBufferMemory
10
  from pathlib import Path
11
  import chromadb
12
  from unidecode import unidecode
 
 
 
 
 
 
13
  import re
 
 
14
 
15
+ list_llm = [
16
+ "mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1",
17
+ "google/gemma-7b-it", "google/gemma-2b-it",
18
+ "HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1",
19
+ "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "tiiuae/falcon-7b-instruct"
 
 
20
  ]
21
  list_llm_simple = [os.path.basename(llm) for llm in list_llm]
22
 
 
23
  def load_doc(list_file_path, chunk_size, chunk_overlap):
 
 
 
24
  loaders = [PyPDFLoader(x) for x in list_file_path]
25
  pages = []
26
  for loader in loaders:
27
  pages.extend(loader.load())
28
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
29
+ return text_splitter.split_documents(pages)
 
 
 
 
 
30
 
 
31
  def create_db(splits, collection_name):
32
  embedding = HuggingFaceEmbeddings()
33
  new_client = chromadb.EphemeralClient()
34
+ return Chroma.from_documents(documents=splits, embedding=embedding, client=new_client, collection_name=collection_name)
 
 
 
 
 
 
 
 
35
 
 
 
 
 
 
 
 
 
 
36
  def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  progress(0.5, desc="Initializing HF Hub...")
38
+ llm = HuggingFaceEndpoint(
39
+ repo_id=llm_model,
40
+ temperature=temperature,
41
+ max_new_tokens=max_tokens,
42
+ top_k=top_k,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  )
44
+
45
+ memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True)
46
+ retriever = vector_db.as_retriever()
47
+
48
+ return ConversationalRetrievalChain.from_llm(
49
  llm,
50
  retriever=retriever,
51
  chain_type="stuff",
52
  memory=memory,
 
53
  return_source_documents=True,
 
54
  verbose=False,
55
  )
 
 
 
56
 
 
 
57
  def create_collection_name(filepath):
 
58
  collection_name = Path(filepath).stem
59
+ collection_name = unidecode(collection_name.replace(" ", "-"))
60
+ collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)[:50]
 
 
 
 
 
 
 
 
 
61
  if len(collection_name) < 3:
62
+ collection_name += 'xyz'
 
63
  if not collection_name[0].isalnum():
64
  collection_name = 'A' + collection_name[1:]
65
  if not collection_name[-1].isalnum():
66
  collection_name = collection_name[:-1] + 'Z'
 
 
67
  return collection_name
68
 
 
69
  def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
 
70
  list_file_path = [x.name for x in list_file_obj if x is not None]
 
 
 
71
  collection_name = create_collection_name(list_file_path[0])
 
 
72
  doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
 
 
 
73
  vector_db = create_db(doc_splits, collection_name)
74
+ return vector_db, collection_name, "Completed!"
 
 
75
 
76
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
 
77
  llm_name = list_llm[llm_option]
 
 
78
  qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
79
+ return qa_chain, "Completed!"
 
80
 
81
  def format_chat_history(message, chat_history):
82
+ return [f"User: {user_message}\nAssistant: {bot_message}" for user_message, bot_message in chat_history]
 
 
 
 
 
83
 
84
  def conversation(qa_chain, message, history):
85
  formatted_chat_history = format_chat_history(message, history)
 
 
 
86
  response = qa_chain({"question": message, "chat_history": formatted_chat_history})
87
+ response_answer = response["answer"].split("Helpful Answer:")[-1]
 
 
88
  response_sources = response["source_documents"]
89
+ sources = [(source.page_content.strip(), source.metadata["page"] + 1) for source in response_sources[:3]]
 
 
 
 
 
 
 
 
 
 
90
  new_history = history + [(message, response_answer)]
91
+ return qa_chain, gr.update(value=""), new_history, *[item for source in sources for item in source]
 
 
 
 
 
 
 
 
 
 
 
92
 
93
  def demo():
94
  with gr.Blocks(theme="base") as demo:
 
96
  qa_chain = gr.State()
97
  collection_name = gr.State()
98
 
99
+ gr.Markdown("# PDF-based Chatbot Creator")
 
 
 
 
 
 
 
 
 
100
 
101
+ with gr.Tab("Step 1 - Upload PDFs"):
102
+ document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents")
 
 
103
 
104
+ with gr.Tab("Step 2 - Process Documents"):
105
+ db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value="ChromaDB", type="index")
106
+ with gr.Accordion("Advanced Options - Document text splitter", open=False):
107
+ slider_chunk_size = gr.Slider(100, 1000, 1000, step=20, label="Chunk size")
108
+ slider_chunk_overlap = gr.Slider(10, 200, 100, step=10, label="Chunk overlap")
109
+ db_progress = gr.Textbox(label="Vector database initialization", value="None")
110
+ db_btn = gr.Button("Generate vector database")
 
 
 
 
 
111
 
112
+ with gr.Tab("Step 3 - Initialize QA chain"):
113
+ llm_btn = gr.Radio(list_llm_simple, label="LLM models", value=list_llm_simple[5], type="index")
 
 
114
  with gr.Accordion("Advanced options - LLM model", open=False):
115
+ slider_temperature = gr.Slider(0.01, 1.0, 0.3, step=0.1, label="Temperature")
116
+ slider_maxtokens = gr.Slider(224, 4096, 1024, step=32, label="Max Tokens")
117
+ slider_topk = gr.Slider(1, 10, 3, step=1, label="top-k samples")
118
+ language_btn = gr.Radio(["Italian", "English"], label="Language", value="Italian", type="index")
119
+ llm_progress = gr.Textbox(value="None", label="QA chain initialization")
120
+ qachain_btn = gr.Button("Initialize Question Answering chain")
 
 
 
 
 
 
121
 
122
+ with gr.Tab("Step 4 - Chatbot"):
 
123
  chatbot = gr.Chatbot(height=300)
124
+ with gr.Accordion("Advanced options - Document references", open=False):
125
+ doc_sources = [gr.Textbox(label=f"Reference {i+1}", lines=2, container=True, scale=20) for i in range(3)]
126
+ source_pages = [gr.Number(label="Page", scale=1) for _ in range(3)]
127
+ msg = gr.Textbox(placeholder="Enter message (e.g., 'What is this document about?')", container=True)
128
+ submit_btn = gr.Button("Send message")
129
+ clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
 
 
 
 
 
 
 
 
 
130
 
131
+ db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress])
132
+ qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress])
133
+
134
+ submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot] + doc_sources + source_pages)
135
+ msg.submit(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot] + doc_sources + source_pages)
136
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
  demo.queue().launch(debug=True)
138
 
 
139
  if __name__ == "__main__":
140
  demo()