farmax commited on
Commit
ab26ada
1 Parent(s): 87a53c5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +188 -80
app.py CHANGED
@@ -1,40 +1,57 @@
1
  import gradio as gr
2
  import os
 
3
  from langchain_community.document_loaders import PyPDFLoader
4
  from langchain.text_splitter import RecursiveCharacterTextSplitter
5
  from langchain_community.vectorstores import Chroma
6
  from langchain.chains import ConversationalRetrievalChain
7
  from langchain_community.embeddings import HuggingFaceEmbeddings
8
- from langchain_community.llms import HuggingFaceEndpoint
 
9
  from langchain.memory import ConversationBufferMemory
 
 
10
  from pathlib import Path
11
  import chromadb
12
  from unidecode import unidecode
 
 
 
 
 
 
13
  import re
 
 
14
 
15
- # List of available LLM models
16
- list_llm = [
17
- "mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1",
18
- "google/gemma-7b-it", "google/gemma-2b-it",
19
- "HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1",
20
- "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2",
21
- "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct",
22
- "tiiuae/falcon-7b-instruct", "google/flan-t5-xxl"
23
  ]
24
  list_llm_simple = [os.path.basename(llm) for llm in list_llm]
25
 
 
26
  def load_doc(list_file_path, chunk_size, chunk_overlap):
 
 
 
27
  loaders = [PyPDFLoader(x) for x in list_file_path]
28
  pages = []
29
  for loader in loaders:
30
  pages.extend(loader.load())
 
31
  text_splitter = RecursiveCharacterTextSplitter(
32
- chunk_size=chunk_size,
33
- chunk_overlap=chunk_overlap
34
- )
35
  doc_splits = text_splitter.split_documents(pages)
36
  return doc_splits
37
 
 
 
38
  def create_db(splits, collection_name):
39
  embedding = HuggingFaceEmbeddings()
40
  new_client = chromadb.EphemeralClient()
@@ -42,18 +59,102 @@ def create_db(splits, collection_name):
42
  documents=splits,
43
  embedding=embedding,
44
  client=new_client,
45
- collection_name=collection_name
 
46
  )
47
  return vectordb
48
 
 
 
 
 
 
 
 
 
 
 
49
  def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  progress(0.5, desc="Initializing HF Hub...")
51
- llm = HuggingFaceEndpoint(
52
- repo_id=llm_model,
53
- temperature=temperature,
54
- max_new_tokens=max_tokens,
55
- top_k=top_k
56
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
  progress(0.75, desc="Defining buffer memory...")
59
  memory = ConversationBufferMemory(
@@ -61,50 +162,77 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
61
  output_key='answer',
62
  return_messages=True
63
  )
64
- retriever = vector_db.as_retriever(search_kwargs={'k': 5}) # Increased from 3 to 5
 
65
  progress(0.8, desc="Defining retrieval chain...")
66
  qa_chain = ConversationalRetrievalChain.from_llm(
67
  llm,
68
  retriever=retriever,
69
  chain_type="stuff",
70
  memory=memory,
 
71
  return_source_documents=True,
 
72
  verbose=False,
73
  )
74
  progress(0.9, desc="Done!")
75
  return qa_chain
76
 
 
 
 
77
  def create_collection_name(filepath):
 
78
  collection_name = Path(filepath).stem
79
- collection_name = collection_name.replace(" ", "-")
 
 
 
80
  collection_name = unidecode(collection_name)
 
 
81
  collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
 
82
  collection_name = collection_name[:50]
 
83
  if len(collection_name) < 3:
84
  collection_name = collection_name + 'xyz'
 
85
  if not collection_name[0].isalnum():
86
  collection_name = 'A' + collection_name[1:]
87
  if not collection_name[-1].isalnum():
88
  collection_name = collection_name[:-1] + 'Z'
 
 
89
  return collection_name
90
 
 
91
  def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
 
92
  list_file_path = [x.name for x in list_file_obj if x is not None]
93
- progress(0.1, desc="Creating collection...")
 
 
94
  collection_name = create_collection_name(list_file_path[0])
95
- progress(0.25, desc="Loading documents...")
 
96
  doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
97
 
98
- progress(0.5, desc="Generating vector database...")
 
99
  vector_db = create_db(doc_splits, collection_name)
100
- progress(0.9, desc="Done!")
101
 
102
- return vector_db, collection_name, "Completed!"
103
 
104
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
 
105
  llm_name = list_llm[llm_option]
 
 
106
  qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
107
- return qa_chain, "Completed!"
 
108
 
109
  def format_chat_history(message, chat_history):
110
  formatted_chat_history = []
@@ -112,28 +240,34 @@ def format_chat_history(message, chat_history):
112
  formatted_chat_history.append(f"User: {user_message}")
113
  formatted_chat_history.append(f"Assistant: {bot_message}")
114
  return formatted_chat_history
 
115
 
116
  def conversation(qa_chain, message, history):
117
  formatted_chat_history = format_chat_history(message, history)
 
 
 
118
  response = qa_chain({"question": message, "chat_history": formatted_chat_history})
119
  response_answer = response["answer"]
120
  if response_answer.find("Helpful Answer:") != -1:
121
  response_answer = response_answer.split("Helpful Answer:")[-1]
122
  response_sources = response["source_documents"]
 
 
 
 
 
 
 
 
 
123
 
124
- source_info = []
125
- for i in range(min(5, len(response_sources))): # Increased from 3 to 5
126
- source = response_sources[i]
127
- source_info.append({
128
- 'content': source.page_content.strip(),
129
- 'page': source.metadata["page"] + 1
130
- })
131
-
132
  new_history = history + [(message, response_answer)]
133
- return qa_chain, gr.update(value=""), new_history, *[info['content'] for info in source_info], *[info['page'] for info in source_info]
 
 
134
 
135
- # The rest of the code (demo function and UI setup) remains largely the same,
136
- # but update the outputs of the conversation function to handle 5 sources instead of 3.
137
  def upload_file(file_obj):
138
  list_file_path = []
139
  for idx, file in enumerate(file_obj):
@@ -196,6 +330,7 @@ def demo():
196
  with gr.Row():
197
  qachain_btn = gr.Button("Inizializza Question Answering chain")
198
 
 
199
  with gr.Tab("Passo 4 - Chatbot"):
200
  chatbot = gr.Chatbot(height=300)
201
  with gr.Accordion("Opzioni avanzate - Riferimenti ai documenti", open=False):
@@ -208,12 +343,6 @@ def demo():
208
  with gr.Row():
209
  doc_source3 = gr.Textbox(label="Riferimento 3", lines=2, container=True, scale=20)
210
  source3_page = gr.Number(label="Pagina", scale=1)
211
- with gr.Row():
212
- doc_source4 = gr.Textbox(label="Riferimento 4", lines=2, container=True, scale=20)
213
- source4_page = gr.Number(label="Pagina", scale=1)
214
- with gr.Row():
215
- doc_source5 = gr.Textbox(label="Riferimento 5", lines=2, container=True, scale=20)
216
- source5_page = gr.Number(label="Pagina", scale=1)
217
  with gr.Row():
218
  msg = gr.Textbox(placeholder="Inserisci messaggio (es. 'Di cosa tratta questo documento?')", container=True)
219
  with gr.Row():
@@ -225,49 +354,28 @@ def demo():
225
  db_btn.click(initialize_database, \
226
  inputs=[document, slider_chunk_size, slider_chunk_overlap], \
227
  outputs=[vector_db, collection_name, db_progress])
228
-
229
  qachain_btn.click(initialize_LLM, \
230
  inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
231
- outputs=[qa_chain, llm_progress]).then(lambda:[None, "", 0, "", 0, "", 0, "", 0, "", 0], \
232
  inputs=None, \
233
- outputs=[chatbot,
234
- doc_source1, source1_page,
235
- doc_source2, source2_page,
236
- doc_source3, source3_page,
237
- doc_source4, source4_page,
238
- doc_source5, source5_page], queue=False)
239
 
240
  # Chatbot events
241
  msg.submit(conversation, \
242
  inputs=[qa_chain, msg, chatbot], \
243
- outputs=[qa_chain, msg, chatbot, \
244
- doc_source1, source1_page,
245
- doc_source2, source2_page,
246
- doc_source3, source3_page,
247
- doc_source4, source4_page,
248
- doc_source5, source5_page], queue=False)
249
- submit_btn.click(conversation,
250
- inputs=[qa_chain, msg, chatbot],
251
- outputs=[qa_chain, msg, chatbot,
252
- doc_source1, source1_page,
253
- doc_source2, source2_page,
254
- doc_source3, source3_page,
255
- doc_source4, source4_page,
256
- doc_source5, source5_page], queue=False)
257
- clear_btn.click(
258
- lambda: [None, "", 0, "", 0, "", 0, "", 0, "", 0],
259
- inputs=None,
260
- outputs=[
261
- chatbot,
262
- doc_source1, source1_page,
263
- doc_source2, source2_page,
264
- doc_source3, source3_page,
265
- doc_source4, source4_page,
266
- doc_source5, source5_page
267
- ],
268
- queue=False
269
- )
270
  demo.queue().launch(debug=True)
271
 
 
272
  if __name__ == "__main__":
273
- demo()
 
1
  import gradio as gr
2
  import os
3
+
4
  from langchain_community.document_loaders import PyPDFLoader
5
  from langchain.text_splitter import RecursiveCharacterTextSplitter
6
  from langchain_community.vectorstores import Chroma
7
  from langchain.chains import ConversationalRetrievalChain
8
  from langchain_community.embeddings import HuggingFaceEmbeddings
9
+ from langchain_community.llms import HuggingFacePipeline
10
+ from langchain.chains import ConversationChain
11
  from langchain.memory import ConversationBufferMemory
12
+ from langchain_community.llms import HuggingFaceEndpoint
13
+
14
  from pathlib import Path
15
  import chromadb
16
  from unidecode import unidecode
17
+
18
+ from transformers import AutoTokenizer
19
+ import transformers
20
+ import torch
21
+ import tqdm
22
+ import accelerate
23
  import re
24
+ # from chromadb.utils import get_default_config
25
+ vector_db = ''
26
 
27
+ # default_persist_directory = './chroma_HF/'
28
+ list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
29
+ "google/gemma-7b-it","google/gemma-2b-it", \
30
+ "HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", \
31
+ "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", \
32
+ "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", \
33
+ "google/flan-t5-xxl"
 
34
  ]
35
  list_llm_simple = [os.path.basename(llm) for llm in list_llm]
36
 
37
+ # Load PDF document and create doc splits
38
  def load_doc(list_file_path, chunk_size, chunk_overlap):
39
+ # Processing for one document only
40
+ # loader = PyPDFLoader(file_path)
41
+ # pages = loader.load()
42
  loaders = [PyPDFLoader(x) for x in list_file_path]
43
  pages = []
44
  for loader in loaders:
45
  pages.extend(loader.load())
46
+ # text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
47
  text_splitter = RecursiveCharacterTextSplitter(
48
+ chunk_size = chunk_size,
49
+ chunk_overlap = chunk_overlap)
 
50
  doc_splits = text_splitter.split_documents(pages)
51
  return doc_splits
52
 
53
+
54
+ # Create vector database
55
  def create_db(splits, collection_name):
56
  embedding = HuggingFaceEmbeddings()
57
  new_client = chromadb.EphemeralClient()
 
59
  documents=splits,
60
  embedding=embedding,
61
  client=new_client,
62
+ collection_name=collection_name,
63
+ # persist_directory=default_persist_directory
64
  )
65
  return vectordb
66
 
67
+
68
+ # Load vector database
69
+ def load_db():
70
+ embedding = HuggingFaceEmbeddings()
71
+ vectordb = Chroma(
72
+ # persist_directory=default_persist_directory,
73
+ embedding_function=embedding)
74
+ return vectordb
75
+
76
+ # Initialize langchain LLM chain
77
  def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
78
+ progress(0.1, desc="Initializing HF tokenizer...")
79
+ # HuggingFacePipeline uses local model
80
+ # Note: it will download model locally...
81
+ # tokenizer=AutoTokenizer.from_pretrained(llm_model)
82
+ # progress(0.5, desc="Initializing HF pipeline...")
83
+ # pipeline=transformers.pipeline(
84
+ # "text-generation",
85
+ # model=llm_model,
86
+ # tokenizer=tokenizer,
87
+ # torch_dtype=torch.bfloat16,
88
+ # trust_remote_code=True,
89
+ # device_map="auto",
90
+ # # max_length=1024,
91
+ # max_new_tokens=max_tokens,
92
+ # do_sample=True,
93
+ # top_k=top_k,
94
+ # num_return_sequences=1,
95
+ # eos_token_id=tokenizer.eos_token_id
96
+ # )
97
+ # llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
98
+
99
+ # HuggingFaceHub uses HF inference endpoints
100
  progress(0.5, desc="Initializing HF Hub...")
101
+ # Use of trust_remote_code as model_kwargs
102
+ # Warning: langchain issue
103
+ # URL: https://github.com/langchain-ai/langchain/issues/6080
104
+ if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
105
+ llm = HuggingFaceEndpoint(
106
+ repo_id=llm_model,
107
+ # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
108
+ temperature = temperature,
109
+ max_new_tokens = max_tokens,
110
+ top_k = top_k,
111
+ load_in_8bit = True,
112
+ )
113
+ elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1","mosaicml/mpt-7b-instruct"]:
114
+ raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
115
+ llm = HuggingFaceEndpoint(
116
+ repo_id=llm_model,
117
+ temperature = temperature,
118
+ max_new_tokens = max_tokens,
119
+ top_k = top_k,
120
+ )
121
+ elif llm_model == "microsoft/phi-2":
122
+ # raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
123
+ llm = HuggingFaceEndpoint(
124
+ repo_id=llm_model,
125
+ # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
126
+ temperature = temperature,
127
+ max_new_tokens = max_tokens,
128
+ top_k = top_k,
129
+ trust_remote_code = True,
130
+ torch_dtype = "auto",
131
+ )
132
+ elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
133
+ llm = HuggingFaceEndpoint(
134
+ repo_id=llm_model,
135
+ # model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
136
+ temperature = temperature,
137
+ max_new_tokens = 250,
138
+ top_k = top_k,
139
+ )
140
+ elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
141
+ raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
142
+ llm = HuggingFaceEndpoint(
143
+ repo_id=llm_model,
144
+ # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
145
+ temperature = temperature,
146
+ max_new_tokens = max_tokens,
147
+ top_k = top_k,
148
+ )
149
+ else:
150
+ llm = HuggingFaceEndpoint(
151
+ repo_id=llm_model,
152
+ # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
153
+ # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
154
+ temperature = temperature,
155
+ max_new_tokens = max_tokens,
156
+ top_k = top_k,
157
+ )
158
 
159
  progress(0.75, desc="Defining buffer memory...")
160
  memory = ConversationBufferMemory(
 
162
  output_key='answer',
163
  return_messages=True
164
  )
165
+ # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
166
+ retriever=vector_db.as_retriever()
167
  progress(0.8, desc="Defining retrieval chain...")
168
  qa_chain = ConversationalRetrievalChain.from_llm(
169
  llm,
170
  retriever=retriever,
171
  chain_type="stuff",
172
  memory=memory,
173
+ # combine_docs_chain_kwargs={"prompt": your_prompt})
174
  return_source_documents=True,
175
+ #return_generated_question=False,
176
  verbose=False,
177
  )
178
  progress(0.9, desc="Done!")
179
  return qa_chain
180
 
181
+
182
+ # Generate collection name for vector database
183
+ # - Use filepath as input, ensuring unicode text
184
  def create_collection_name(filepath):
185
+ # Extract filename without extension
186
  collection_name = Path(filepath).stem
187
+ # Fix potential issues from naming convention
188
+ ## Remove space
189
+ collection_name = collection_name.replace(" ","-")
190
+ ## ASCII transliterations of Unicode text
191
  collection_name = unidecode(collection_name)
192
+ ## Remove special characters
193
+ #collection_name = re.findall("[\dA-Za-z]*", collection_name)[0]
194
  collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
195
+ ## Limit length to 50 characters
196
  collection_name = collection_name[:50]
197
+ ## Minimum length of 3 characters
198
  if len(collection_name) < 3:
199
  collection_name = collection_name + 'xyz'
200
+ ## Enforce start and end as alphanumeric character
201
  if not collection_name[0].isalnum():
202
  collection_name = 'A' + collection_name[1:]
203
  if not collection_name[-1].isalnum():
204
  collection_name = collection_name[:-1] + 'Z'
205
+ print('Filepath: ', filepath)
206
+ print('Collection name: ', collection_name)
207
  return collection_name
208
 
209
+ # Initialize database
210
  def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
211
+ # Create list of documents (when valid)
212
  list_file_path = [x.name for x in list_file_obj if x is not None]
213
+ print(list_file_path)
214
+ # Create collection_name for vector database
215
+ progress(0.1, desc="Creazione collezione...")
216
  collection_name = create_collection_name(list_file_path[0])
217
+ progress(0.25, desc="Caricamento documenti..")
218
+ # Load document and create splits
219
  doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
220
 
221
+ # Creare o caricare il nuovo database
222
+ progress(0.5, desc="Generazione vector database...")
223
  vector_db = create_db(doc_splits, collection_name)
224
+ progress(0.9, desc="Fatto!")
225
 
226
+ return vector_db, collection_name, "Completato!"
227
 
228
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
229
+ # print("llm_option",llm_option)
230
  llm_name = list_llm[llm_option]
231
+ print(f"Nome del modello: {llm_name}")
232
+
233
  qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
234
+
235
+ return qa_chain, "Completato!"
236
 
237
  def format_chat_history(message, chat_history):
238
  formatted_chat_history = []
 
240
  formatted_chat_history.append(f"User: {user_message}")
241
  formatted_chat_history.append(f"Assistant: {bot_message}")
242
  return formatted_chat_history
243
+
244
 
245
  def conversation(qa_chain, message, history):
246
  formatted_chat_history = format_chat_history(message, history)
247
+ print("formatted_chat_history",formatted_chat_history)
248
+
249
+ # Generate response using QA chain
250
  response = qa_chain({"question": message, "chat_history": formatted_chat_history})
251
  response_answer = response["answer"]
252
  if response_answer.find("Helpful Answer:") != -1:
253
  response_answer = response_answer.split("Helpful Answer:")[-1]
254
  response_sources = response["source_documents"]
255
+ response_source1 = response_sources[0].page_content.strip()
256
+ response_source2 = response_sources[1].page_content.strip()
257
+ response_source3 = response_sources[2].page_content.strip()
258
+ # Langchain sources are zero-based
259
+ response_source1_page = response_sources[0].metadata["page"] + 1
260
+ response_source2_page = response_sources[1].metadata["page"] + 1
261
+ response_source3_page = response_sources[2].metadata["page"] + 1
262
+ #print('chat response: ', response_answer)
263
+ #print('DB source', response_sources)
264
 
265
+ # Append user message and response to chat history
 
 
 
 
 
 
 
266
  new_history = history + [(message, response_answer)]
267
+ # return gr.update(value=""), new_history, response_sources[0], response_sources[1]
268
+ return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
269
+
270
 
 
 
271
  def upload_file(file_obj):
272
  list_file_path = []
273
  for idx, file in enumerate(file_obj):
 
330
  with gr.Row():
331
  qachain_btn = gr.Button("Inizializza Question Answering chain")
332
 
333
+
334
  with gr.Tab("Passo 4 - Chatbot"):
335
  chatbot = gr.Chatbot(height=300)
336
  with gr.Accordion("Opzioni avanzate - Riferimenti ai documenti", open=False):
 
343
  with gr.Row():
344
  doc_source3 = gr.Textbox(label="Riferimento 3", lines=2, container=True, scale=20)
345
  source3_page = gr.Number(label="Pagina", scale=1)
 
 
 
 
 
 
346
  with gr.Row():
347
  msg = gr.Textbox(placeholder="Inserisci messaggio (es. 'Di cosa tratta questo documento?')", container=True)
348
  with gr.Row():
 
354
  db_btn.click(initialize_database, \
355
  inputs=[document, slider_chunk_size, slider_chunk_overlap], \
356
  outputs=[vector_db, collection_name, db_progress])
 
357
  qachain_btn.click(initialize_LLM, \
358
  inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
359
+ outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
360
  inputs=None, \
361
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
362
+ queue=False)
 
 
 
 
363
 
364
  # Chatbot events
365
  msg.submit(conversation, \
366
  inputs=[qa_chain, msg, chatbot], \
367
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
368
+ queue=False)
369
+ submit_btn.click(conversation, \
370
+ inputs=[qa_chain, msg, chatbot], \
371
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
372
+ queue=False)
373
+ clear_btn.click(lambda:[None,"",0,"",0,"",0], \
374
+ inputs=None, \
375
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
376
+ queue=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
377
  demo.queue().launch(debug=True)
378
 
379
+
380
  if __name__ == "__main__":
381
+ demo()