final_best_ig / app.py
far555na's picture
Create app.py
8adeccc verified
from transformers import AutoProcessor, AutoModelForCausalLM
import gradio as gr
import torch
processor = AutoProcessor.from_pretrained('microsoft/git-base')
model = AutoModelForCausalLM.from_pretrained('./')
def predict(image):
try:
inputs = processor(images=image, return_tensors="pt")
device = "cuda" if torch.cuda.is_available() else "cpu"
inputs = {key: value.to(device) for key, value in inputs.items()}
model.to(device)
outputs = model.generate(**inputs)
caption = processor.batch_decode(outputs, skip_special_tokens=True)[0]
return caption
except Exception as e:
print("Error during prediction:", str(e))
return "Error: " + str(e)
with gr.Blocks() as demo:
image = gr.Image(type="pil")
predict_btn = gr.Button("Predict", variant="primary")
output = gr.Textbox(label="Generated Caption")
inputs = [image]
outputs = [output]
predict_btn.click(predict, inputs=inputs, outputs=outputs)
if __name__ == "__main__":
demo.launch()