far555na commited on
Commit
8adeccc
·
verified ·
1 Parent(s): 212d713

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -0
app.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoProcessor, AutoModelForCausalLM
2
+ import gradio as gr
3
+ import torch
4
+
5
+ processor = AutoProcessor.from_pretrained('microsoft/git-base')
6
+ model = AutoModelForCausalLM.from_pretrained('./')
7
+
8
+ def predict(image):
9
+ try:
10
+ inputs = processor(images=image, return_tensors="pt")
11
+
12
+ device = "cuda" if torch.cuda.is_available() else "cpu"
13
+ inputs = {key: value.to(device) for key, value in inputs.items()}
14
+ model.to(device)
15
+
16
+ outputs = model.generate(**inputs)
17
+
18
+ caption = processor.batch_decode(outputs, skip_special_tokens=True)[0]
19
+
20
+ return caption
21
+
22
+ except Exception as e:
23
+ print("Error during prediction:", str(e))
24
+ return "Error: " + str(e)
25
+
26
+ with gr.Blocks() as demo:
27
+ image = gr.Image(type="pil")
28
+ predict_btn = gr.Button("Predict", variant="primary")
29
+ output = gr.Textbox(label="Generated Caption")
30
+
31
+ inputs = [image]
32
+ outputs = [output]
33
+
34
+ predict_btn.click(predict, inputs=inputs, outputs=outputs)
35
+
36
+ if __name__ == "__main__":
37
+ demo.launch()