|
<p align="center"> |
|
<h1 align="center"><ins>DeDoDe</ins> 馃幎<br>Detect, Don't Describe, Describe, Don't Detect, <br> for Local Feature Matching</h1> |
|
<p align="center"> |
|
<a href="https://scholar.google.com/citations?user=Ul-vMR0AAAAJ">Johan Edstedt</a> |
|
路 |
|
<a href="https://scholar.google.com/citations?user=FUE3Wd0AAAAJ">Georg B枚kman</a> |
|
路 |
|
<a href="https://scholar.google.com/citations?user=6WRQpCQAAAAJ">M氓rten Wadenb盲ck</a> |
|
路 |
|
<a href="https://scholar.google.com/citations?user=lkWfR08AAAAJ">Michael Felsberg</a> |
|
路 |
|
</p> |
|
<h2 align="center"><p> |
|
<a href="TODO" align="center">Paper (TODO)</a> | |
|
<a href="TODO" align="center">Project Page (TODO)</a> |
|
</p></h2> |
|
<div align="center"></div> |
|
</p> |
|
<p align="center"> |
|
<img src="assets/matches.jpg" alt="example" width=80%> |
|
<br> |
|
<em>The DeDoDe detector learns to detect 3D consistent repeatable keypoints, which the DeDoDe descriptor learns to match. The result is a powerful decoupled local feature matcher.</em> |
|
<br> |
|
<img src="assets/teaser.png" alt="example" width=40%> |
|
<img src="assets/dedode_roma.png" alt="example" width=40%> |
|
<br> |
|
<em> |
|
We experimentally find that DeDoDe significantly closes the performance gap between detector + descriptor models and fully-fledged matchers. The potential of DeDoDe is not limited to local feature matching, in fact we find that we can improve state-of-the-art matchers by incorporating DeDoDe keypoints. |
|
</em> |
|
</p> |
|
|
|
## How to Use DeDoDe? |
|
Below we show how DeDoDe can be run, you can also check out the [demos](demo) |
|
```python |
|
from DeDoDe import dedode_detector_L, dedode_descriptor_B |
|
from DeDoDe.matchers.dual_softmax_matcher import DualSoftMaxMatcher |
|
|
|
detector = dedode_detector_L(weights = torch.load("dedode_detector_L.pth")) |
|
descriptor = dedode_descriptor_B(weights = torch.load("dedode_descriptor_B.pth")) |
|
matcher = DualSoftMaxMatcher() |
|
|
|
im_A_path = "assets/im_A.jpg" |
|
im_B_path = "assets/im_B.jpg" |
|
im_A = Image.open(im_A_path) |
|
im_B = Image.open(im_B_path) |
|
W_A, H_A = im_A.size |
|
W_B, H_B = im_B.size |
|
|
|
|
|
detections_A = detector.detect_from_path(im_A_path, num_keypoints = 10_000) |
|
keypoints_A, P_A = detections_A["keypoints"], detections_A["confidence"] |
|
|
|
detections_B = detector.detect_from_path(im_B_path, num_keypoints = 10_000) |
|
keypoints_B, P_B = detections_B["keypoints"], detections_B["confidence"] |
|
|
|
description_A = descriptor.describe_keypoints_from_path(im_A_path, keypoints_A)["descriptions"] |
|
description_B = descriptor.describe_keypoints_from_path(im_B_path, keypoints_B)["descriptions"] |
|
|
|
matches_A, matches_B, batch_ids = matcher.match(keypoints_A, description_A, |
|
keypoints_B, description_B, |
|
P_A = P_A, P_B = P_B, |
|
normalize = True, inv_temp=20, threshold = 0.1)#Increasing threshold -> fewer matches, fewer outliers |
|
|
|
matches_A, matches_B = matcher.to_pixel_coords(matches_A, matches_B, H_A, W_A, H_B, W_B) |
|
|
|
``` |
|
## Pretrained Models |
|
|
|
Right now you can find them here: https://github.com/Parskatt/DeDoDe/releases/tag/dedode_pretrained_models |
|
Probably we'll add some autoloading in the near future. |
|
|
|
## BibTeX |
|
|
|
Coming Soon ;) |
|
|