|
import torch |
|
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor |
|
from diffusers.utils import load_image |
|
import os,sys |
|
|
|
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import StableDiffusionXLPipeline |
|
from kolors.models.modeling_chatglm import ChatGLMModel |
|
from kolors.models.tokenization_chatglm import ChatGLMTokenizer |
|
|
|
|
|
from diffusers import AutoencoderKL |
|
from kolors.models.unet_2d_condition import UNet2DConditionModel |
|
|
|
from diffusers import EulerDiscreteScheduler |
|
from PIL import Image |
|
|
|
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) |
|
|
|
|
|
def infer( ip_img_path, prompt ): |
|
|
|
ckpt_dir = f'{root_dir}/weights/Kolors' |
|
text_encoder = ChatGLMModel.from_pretrained( |
|
f'{ckpt_dir}/text_encoder', |
|
torch_dtype=torch.float16).half() |
|
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') |
|
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half() |
|
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") |
|
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half() |
|
|
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained( f'{root_dir}/weights/Kolors-IP-Adapter-Plus/image_encoder', ignore_mismatched_sizes=True).to(dtype=torch.float16) |
|
ip_img_size = 336 |
|
clip_image_processor = CLIPImageProcessor( size=ip_img_size, crop_size=ip_img_size ) |
|
|
|
pipe = StableDiffusionXLPipeline( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
image_encoder=image_encoder, |
|
feature_extractor=clip_image_processor, |
|
force_zeros_for_empty_prompt=False |
|
) |
|
|
|
pipe = pipe.to("cuda") |
|
pipe.enable_model_cpu_offload() |
|
|
|
if hasattr(pipe.unet, 'encoder_hid_proj'): |
|
pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj |
|
|
|
pipe.load_ip_adapter( f'{root_dir}/weights/Kolors-IP-Adapter-Plus' , subfolder="", weight_name=["ip_adapter_plus_general.bin"]) |
|
|
|
basename = ip_img_path.rsplit('/',1)[-1].rsplit('.',1)[0] |
|
ip_adapter_img = Image.open( ip_img_path ) |
|
generator = torch.Generator(device="cpu").manual_seed(66) |
|
|
|
for scale in [0.5]: |
|
pipe.set_ip_adapter_scale([ scale ]) |
|
|
|
image = pipe( |
|
prompt= prompt , |
|
ip_adapter_image=[ ip_adapter_img ], |
|
negative_prompt="", |
|
height=1024, |
|
width=1024, |
|
num_inference_steps= 50, |
|
guidance_scale=5.0, |
|
num_images_per_prompt=1, |
|
generator=generator, |
|
).images[0] |
|
image.save(f'{root_dir}/scripts/outputs/sample_ip_{basename}.jpg') |
|
|
|
|
|
if __name__ == '__main__': |
|
import fire |
|
fire.Fire(infer) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|