|
import argparse |
|
import os |
|
import random |
|
from datetime import datetime |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
from diffusers import AutoencoderKL, DDIMScheduler |
|
from einops import repeat |
|
from omegaconf import OmegaConf |
|
from PIL import Image |
|
import sys |
|
|
|
from src.models.unet_2d_condition import UNet2DConditionModel |
|
from src.models.unet_3d_emo import EMOUNet3DConditionModel |
|
from src.models.whisper.audio2feature import load_audio_model |
|
from src.pipelines.pipeline_echomimicv2 import EchoMimicV2Pipeline |
|
from src.utils.util import save_videos_grid |
|
from src.models.pose_encoder import PoseEncoder |
|
from src.utils.dwpose_util import draw_pose_select_v2 |
|
|
|
from decord import VideoReader |
|
from moviepy.editor import VideoFileClip, AudioFileClip |
|
|
|
ffmpeg_path = os.getenv('FFMPEG_PATH') |
|
if ffmpeg_path is None: |
|
print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=./ffmpeg-4.4-amd64-static") |
|
elif ffmpeg_path not in os.getenv('PATH'): |
|
print("add ffmpeg to path") |
|
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}" |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--config", type=str, default="./configs/prompts/infer.yaml") |
|
parser.add_argument("-W", type=int, default=768) |
|
parser.add_argument("-H", type=int, default=768) |
|
parser.add_argument("-L", type=int, default=240) |
|
parser.add_argument("--seed", type=int, default=3407) |
|
|
|
parser.add_argument("--context_frames", type=int, default=12) |
|
parser.add_argument("--context_overlap", type=int, default=3) |
|
|
|
parser.add_argument("--cfg", type=float, default=2.5) |
|
parser.add_argument("--steps", type=int, default=30) |
|
parser.add_argument("--sample_rate", type=int, default=16000) |
|
parser.add_argument("--fps", type=int, default=24) |
|
parser.add_argument("--device", type=str, default="cuda") |
|
parser.add_argument("--ref_images_dir", type=str, default=f'./assets/halfbody_demo/refimag') |
|
parser.add_argument("--audio_dir", type=str, default='./assets/halfbody_demo/audio') |
|
parser.add_argument("--pose_dir", type=str, default="./assets/halfbody_demo/pose") |
|
parser.add_argument("--refimg_name", type=str, default='natural_bk_openhand/0035.png') |
|
parser.add_argument("--audio_name", type=str, default='chinese/echomimicv2_woman.wav') |
|
parser.add_argument("--pose_name", type=str, default="01") |
|
|
|
args = parser.parse_args() |
|
|
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
config = OmegaConf.load(args.config) |
|
if config.weight_dtype == "fp16": |
|
weight_dtype = torch.float16 |
|
else: |
|
weight_dtype = torch.float32 |
|
|
|
device = args.device |
|
if device.__contains__("cuda") and not torch.cuda.is_available(): |
|
device = "cpu" |
|
|
|
inference_config_path = config.inference_config |
|
infer_config = OmegaConf.load(inference_config_path) |
|
|
|
model_flag = '{}-iter{}'.format(config.motion_module_path.split('/')[-2], config.motion_module_path.split('/')[-1].split('-')[-1][:-4]) |
|
save_dir = Path(f"outputs/{model_flag}-seed{args.seed}/") |
|
save_dir.mkdir(exist_ok=True, parents=True) |
|
print(save_dir) |
|
|
|
|
|
|
|
vae = AutoencoderKL.from_pretrained( |
|
config.pretrained_vae_path, |
|
).to(device, dtype=weight_dtype) |
|
|
|
|
|
reference_unet = UNet2DConditionModel.from_pretrained( |
|
config.pretrained_base_model_path, |
|
subfolder="unet", |
|
).to(dtype=weight_dtype, device=device) |
|
reference_unet.load_state_dict( |
|
torch.load(config.reference_unet_path, map_location="cpu"), |
|
) |
|
|
|
|
|
if os.path.exists(config.motion_module_path): |
|
print('using motion module') |
|
else: |
|
exit("motion module not found") |
|
|
|
denoising_unet = EMOUNet3DConditionModel.from_pretrained_2d( |
|
config.pretrained_base_model_path, |
|
config.motion_module_path, |
|
subfolder="unet", |
|
unet_additional_kwargs=infer_config.unet_additional_kwargs, |
|
).to(dtype=weight_dtype, device=device) |
|
|
|
denoising_unet.load_state_dict( |
|
torch.load(config.denoising_unet_path, map_location="cpu"), |
|
strict=False |
|
) |
|
|
|
|
|
pose_net = PoseEncoder(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to( |
|
dtype=weight_dtype, device=device |
|
) |
|
pose_net.load_state_dict(torch.load(config.pose_encoder_path)) |
|
|
|
|
|
audio_processor = load_audio_model(model_path=config.audio_model_path, device=device) |
|
|
|
|
|
width, height = args.W, args.H |
|
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs) |
|
scheduler = DDIMScheduler(**sched_kwargs) |
|
|
|
pipe = EchoMimicV2Pipeline( |
|
vae=vae, |
|
reference_unet=reference_unet, |
|
denoising_unet=denoising_unet, |
|
audio_guider=audio_processor, |
|
pose_encoder=pose_net, |
|
scheduler=scheduler, |
|
) |
|
|
|
pipe = pipe.to(device, dtype=weight_dtype) |
|
|
|
if args.seed is not None and args.seed > -1: |
|
generator = torch.manual_seed(args.seed) |
|
else: |
|
generator = torch.manual_seed(random.randint(100, 1000000)) |
|
|
|
final_fps = args.fps |
|
|
|
ref_images_dir = args.ref_images_dir |
|
audio_dir = args.audio_dir |
|
pose_dir = args.pose_dir |
|
|
|
refimg_name = args.refimg_name |
|
audio_name = args.audio_name |
|
pose_name = args.pose_name |
|
|
|
|
|
inputs_dict = { |
|
"refimg": f'{ref_images_dir}/{refimg_name}', |
|
"audio": f'{audio_dir}/{audio_name}', |
|
"pose": f'{pose_dir}/{pose_name}', |
|
} |
|
|
|
start_idx = 0 |
|
|
|
print('Pose:', inputs_dict['pose']) |
|
print('Reference:', inputs_dict['refimg']) |
|
print('Audio:', inputs_dict['audio']) |
|
|
|
|
|
ref_flag = '.'.join([refimg_name.split('/')[-2], refimg_name.split('/')[-1]]) |
|
|
|
save_path = Path(f"{save_dir}/{ref_flag}/{pose_name}") |
|
|
|
save_path.mkdir(exist_ok=True, parents=True) |
|
ref_s = refimg_name.split('/')[-1].split('.')[0] |
|
save_name = f"{save_path}/{ref_s}-a-{audio_name}-i{start_idx}" |
|
|
|
ref_image_pil = Image.open(inputs_dict['refimg']).resize((args.W, args.H)) |
|
audio_clip = AudioFileClip(inputs_dict['audio']) |
|
|
|
args.L = min(args.L, int(audio_clip.duration * final_fps), len(os.listdir(inputs_dict['pose']))) |
|
|
|
pose_list = [] |
|
for index in range(start_idx, start_idx + args.L): |
|
tgt_musk = np.zeros((args.W, args.H, 3)).astype('uint8') |
|
tgt_musk_path = os.path.join(inputs_dict['pose'], "{}.npy".format(index)) |
|
detected_pose = np.load(tgt_musk_path, allow_pickle=True).tolist() |
|
imh_new, imw_new, rb, re, cb, ce = detected_pose['draw_pose_params'] |
|
im = draw_pose_select_v2(detected_pose, imh_new, imw_new, ref_w=800) |
|
im = np.transpose(np.array(im),(1, 2, 0)) |
|
tgt_musk[rb:re,cb:ce,:] = im |
|
|
|
tgt_musk_pil = Image.fromarray(np.array(tgt_musk)).convert('RGB') |
|
pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=weight_dtype, device=device).permute(2,0,1) / 255.0) |
|
|
|
poses_tensor = torch.stack(pose_list, dim=1).unsqueeze(0) |
|
audio_clip = AudioFileClip(inputs_dict['audio']) |
|
|
|
audio_clip = audio_clip.set_duration(args.L / final_fps) |
|
video = pipe( |
|
ref_image_pil, |
|
inputs_dict['audio'], |
|
poses_tensor[:,:,:args.L,...], |
|
width, |
|
height, |
|
args.L, |
|
args.steps, |
|
args.cfg, |
|
generator=generator, |
|
audio_sample_rate=args.sample_rate, |
|
context_frames=args.context_frames, |
|
fps=final_fps, |
|
context_overlap=args.context_overlap, |
|
start_idx=start_idx, |
|
).videos |
|
|
|
final_length = min(video.shape[2], poses_tensor.shape[2], args.L) |
|
video_sig = video[:, :, :final_length, :, :] |
|
|
|
save_videos_grid( |
|
video_sig, |
|
save_name + "_woa_sig.mp4", |
|
n_rows=1, |
|
fps=final_fps, |
|
) |
|
|
|
video_clip_sig = VideoFileClip(save_name + "_woa_sig.mp4",) |
|
video_clip_sig = video_clip_sig.set_audio(audio_clip) |
|
video_clip_sig.write_videofile(save_name + "_sig.mp4", codec="libx264", audio_codec="aac", threads=2) |
|
os.system("rm {}".format(save_name + "_woa_sig.mp4")) |
|
print(save_name) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|