Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
from typing import Dict | |
import time | |
import os | |
import pandas as pd | |
import numpy as np | |
import torch | |
from datasets import Dataset, load_dataset | |
from peft import LoraConfig | |
from tqdm import tqdm | |
from transformers import PreTrainedTokenizerFast, Seq2SeqTrainer, DataCollatorForSeq2Seq,Seq2SeqTrainingArguments | |
from transformers.generation.configuration_utils import GenerationConfig | |
from model.chat_model import TextToTextModel | |
from config import SFTconfig, T5ModelConfig | |
from utils.functions import get_T5_config, MyTrainerCallback | |
tqdm.pandas() | |
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' | |
def get_dataset(file: str, split: str, tokenizer: PreTrainedTokenizerFast, cache_dir: str='.cache') -> Dataset: | |
""" | |
加载数据集 | |
""" | |
# 加载json数据集,如果要加载parquet,更改为'parquet'即可 | |
dataset = load_dataset('json', data_files=file, split=split, cache_dir=cache_dir) | |
def tokens_to_ids(samples: dict) -> Dict[str, str]: | |
eos_token_id = tokenizer.eos_token_id | |
batch_prompt = samples['prompt'] | |
batch_response = samples['response'] | |
encoded_prompt = tokenizer(batch_prompt, truncation=False, padding=False, return_attention_mask=False) | |
encoded_response = tokenizer(batch_response, truncation=False, padding=False, return_attention_mask=False) | |
# vocab size 小于65535 可以用 uint16, 每个样本都要添加eos_token_id | |
input_ids = [np.array(item + [eos_token_id], dtype=np.uint16) for item in encoded_prompt["input_ids"]] | |
labels = [np.array(item + [eos_token_id], dtype=np.uint16) for item in encoded_response["input_ids"]] | |
return { | |
'input_ids': input_ids, | |
'labels': labels, | |
} | |
dataset = dataset.map(tokens_to_ids, batched=True, batch_size=8192, remove_columns=dataset.column_names) | |
return dataset | |
def sft_train(config: SFTconfig) -> None: | |
# step 1. 加载tokenizer | |
tokenizer = PreTrainedTokenizerFast.from_pretrained(config.tokenizer_dir) | |
# step 2. 加载预训练模型 | |
model = None | |
if os.path.isdir(config.finetune_from_ckp_file): | |
# 传入文件夹则 from_pretrained | |
model = TextToTextModel.from_pretrained(config.finetune_from_ckp_file) | |
else: | |
# load_state_dict | |
t5_config = get_T5_config(T5ModelConfig(), vocab_size=len(tokenizer), decoder_start_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id) | |
model = TextToTextModel(t5_config) | |
model.load_state_dict(torch.load(config.finetune_from_ckp_file, map_location='cpu')) # set cpu for no exception | |
# Step 4: Load the dataset | |
dataset = get_dataset(file=config.sft_train_file, split="train", tokenizer=tokenizer) | |
# Step 5: Define the training arguments | |
# T5属于sequence to sequence模型,故要使用Seq2SeqTrainingArguments、DataCollatorForSeq2Seq、Seq2SeqTrainer | |
# huggingface官网的sft工具适用于language model/LM模型 | |
generation_config = GenerationConfig() | |
generation_config.remove_invalid_values = True | |
generation_config.eos_token_id = tokenizer.eos_token_id | |
generation_config.pad_token_id = tokenizer.pad_token_id | |
generation_config.decoder_start_token_id = tokenizer.pad_token_id | |
generation_config.max_new_tokens = 320 | |
generation_config.repetition_penalty = 1.5 | |
generation_config.num_beams = 1 # greedy search | |
generation_config.do_sample = False # greedy search | |
training_args = Seq2SeqTrainingArguments( | |
output_dir=config.output_dir, | |
per_device_train_batch_size=config.batch_size, | |
auto_find_batch_size=True, # 防止OOM | |
gradient_accumulation_steps=config.gradient_accumulation_steps, | |
learning_rate=config.learning_rate, | |
logging_steps=config.logging_steps, | |
num_train_epochs=config.num_train_epochs, | |
optim="adafactor", | |
report_to='tensorboard', | |
log_level='info', | |
save_steps=config.save_steps, | |
save_total_limit=3, | |
fp16=config.fp16, | |
logging_first_step=config.logging_first_step, | |
warmup_steps=config.warmup_steps, | |
seed=config.seed, | |
generation_config=generation_config, | |
) | |
# step 6: init a collator | |
collator = DataCollatorForSeq2Seq(tokenizer, max_length=config.max_seq_len) | |
empty_cuda_cahce = MyTrainerCallback() | |
# Step 7: Define the Trainer | |
trainer = Seq2SeqTrainer( | |
model=model, | |
args=training_args, | |
train_dataset=dataset, | |
tokenizer=tokenizer, | |
data_collator=collator, | |
callbacks=[empty_cuda_cahce] | |
) | |
# step 8: train | |
trainer.train( | |
# resume_from_checkpoint=True | |
) | |
loss_log = pd.DataFrame(trainer.state.log_history) | |
log_dir = './logs' | |
if not os.path.exists(log_dir): | |
os.mkdir(log_dir) | |
loss_log.to_csv(f"{log_dir}/sft_train_log_{time.strftime('%Y%m%d-%H%M')}.csv") | |
# Step 9: Save the model | |
trainer.save_model(config.output_dir) | |
if __name__ == '__main__': | |
config = SFTconfig() | |
sft_train(config) |