chatmlTest / sft_train.py
fangshengren's picture
Upload 59 files
f4fac26 verified
raw
history blame
5.08 kB
# coding=utf-8
from typing import Dict
import time
import os
import pandas as pd
import numpy as np
import torch
from datasets import Dataset, load_dataset
from peft import LoraConfig
from tqdm import tqdm
from transformers import PreTrainedTokenizerFast, Seq2SeqTrainer, DataCollatorForSeq2Seq,Seq2SeqTrainingArguments
from transformers.generation.configuration_utils import GenerationConfig
from model.chat_model import TextToTextModel
from config import SFTconfig, T5ModelConfig
from utils.functions import get_T5_config, MyTrainerCallback
tqdm.pandas()
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
def get_dataset(file: str, split: str, tokenizer: PreTrainedTokenizerFast, cache_dir: str='.cache') -> Dataset:
"""
加载数据集
"""
# 加载json数据集,如果要加载parquet,更改为'parquet'即可
dataset = load_dataset('json', data_files=file, split=split, cache_dir=cache_dir)
def tokens_to_ids(samples: dict) -> Dict[str, str]:
eos_token_id = tokenizer.eos_token_id
batch_prompt = samples['prompt']
batch_response = samples['response']
encoded_prompt = tokenizer(batch_prompt, truncation=False, padding=False, return_attention_mask=False)
encoded_response = tokenizer(batch_response, truncation=False, padding=False, return_attention_mask=False)
# vocab size 小于65535 可以用 uint16, 每个样本都要添加eos_token_id
input_ids = [np.array(item + [eos_token_id], dtype=np.uint16) for item in encoded_prompt["input_ids"]]
labels = [np.array(item + [eos_token_id], dtype=np.uint16) for item in encoded_response["input_ids"]]
return {
'input_ids': input_ids,
'labels': labels,
}
dataset = dataset.map(tokens_to_ids, batched=True, batch_size=8192, remove_columns=dataset.column_names)
return dataset
def sft_train(config: SFTconfig) -> None:
# step 1. 加载tokenizer
tokenizer = PreTrainedTokenizerFast.from_pretrained(config.tokenizer_dir)
# step 2. 加载预训练模型
model = None
if os.path.isdir(config.finetune_from_ckp_file):
# 传入文件夹则 from_pretrained
model = TextToTextModel.from_pretrained(config.finetune_from_ckp_file)
else:
# load_state_dict
t5_config = get_T5_config(T5ModelConfig(), vocab_size=len(tokenizer), decoder_start_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id)
model = TextToTextModel(t5_config)
model.load_state_dict(torch.load(config.finetune_from_ckp_file, map_location='cpu')) # set cpu for no exception
# Step 4: Load the dataset
dataset = get_dataset(file=config.sft_train_file, split="train", tokenizer=tokenizer)
# Step 5: Define the training arguments
# T5属于sequence to sequence模型,故要使用Seq2SeqTrainingArguments、DataCollatorForSeq2Seq、Seq2SeqTrainer
# huggingface官网的sft工具适用于language model/LM模型
generation_config = GenerationConfig()
generation_config.remove_invalid_values = True
generation_config.eos_token_id = tokenizer.eos_token_id
generation_config.pad_token_id = tokenizer.pad_token_id
generation_config.decoder_start_token_id = tokenizer.pad_token_id
generation_config.max_new_tokens = 320
generation_config.repetition_penalty = 1.5
generation_config.num_beams = 1 # greedy search
generation_config.do_sample = False # greedy search
training_args = Seq2SeqTrainingArguments(
output_dir=config.output_dir,
per_device_train_batch_size=config.batch_size,
auto_find_batch_size=True, # 防止OOM
gradient_accumulation_steps=config.gradient_accumulation_steps,
learning_rate=config.learning_rate,
logging_steps=config.logging_steps,
num_train_epochs=config.num_train_epochs,
optim="adafactor",
report_to='tensorboard',
log_level='info',
save_steps=config.save_steps,
save_total_limit=3,
fp16=config.fp16,
logging_first_step=config.logging_first_step,
warmup_steps=config.warmup_steps,
seed=config.seed,
generation_config=generation_config,
)
# step 6: init a collator
collator = DataCollatorForSeq2Seq(tokenizer, max_length=config.max_seq_len)
empty_cuda_cahce = MyTrainerCallback()
# Step 7: Define the Trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer,
data_collator=collator,
callbacks=[empty_cuda_cahce]
)
# step 8: train
trainer.train(
# resume_from_checkpoint=True
)
loss_log = pd.DataFrame(trainer.state.log_history)
log_dir = './logs'
if not os.path.exists(log_dir):
os.mkdir(log_dir)
loss_log.to_csv(f"{log_dir}/sft_train_log_{time.strftime('%Y%m%d-%H%M')}.csv")
# Step 9: Save the model
trainer.save_model(config.output_dir)
if __name__ == '__main__':
config = SFTconfig()
sft_train(config)