Spaces:
Running
on
A10G
Running
on
A10G
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import pytest | |
import random | |
import torch | |
from audiocraft.adversarial import ( | |
AdversarialLoss, | |
get_adv_criterion, | |
get_real_criterion, | |
get_fake_criterion, | |
FeatureMatchingLoss, | |
MultiScaleDiscriminator, | |
) | |
class TestAdversarialLoss: | |
def test_adversarial_single_multidiscriminator(self): | |
adv = MultiScaleDiscriminator() | |
optimizer = torch.optim.Adam( | |
adv.parameters(), | |
lr=1e-4, | |
) | |
loss, loss_real, loss_fake = get_adv_criterion('mse'), get_real_criterion('mse'), get_fake_criterion('mse') | |
adv_loss = AdversarialLoss(adv, optimizer, loss, loss_real, loss_fake) | |
B, C, T = 4, 1, random.randint(1000, 5000) | |
real = torch.randn(B, C, T) | |
fake = torch.randn(B, C, T) | |
disc_loss = adv_loss.train_adv(fake, real) | |
assert isinstance(disc_loss, torch.Tensor) and isinstance(disc_loss.item(), float) | |
loss, loss_feat = adv_loss(fake, real) | |
assert isinstance(loss, torch.Tensor) and isinstance(loss.item(), float) | |
# we did not specify feature loss | |
assert loss_feat.item() == 0. | |
def test_adversarial_feat_loss(self): | |
adv = MultiScaleDiscriminator() | |
optimizer = torch.optim.Adam( | |
adv.parameters(), | |
lr=1e-4, | |
) | |
loss, loss_real, loss_fake = get_adv_criterion('mse'), get_real_criterion('mse'), get_fake_criterion('mse') | |
feat_loss = FeatureMatchingLoss() | |
adv_loss = AdversarialLoss(adv, optimizer, loss, loss_real, loss_fake, feat_loss) | |
B, C, T = 4, 1, random.randint(1000, 5000) | |
real = torch.randn(B, C, T) | |
fake = torch.randn(B, C, T) | |
loss, loss_feat = adv_loss(fake, real) | |
assert isinstance(loss, torch.Tensor) and isinstance(loss.item(), float) | |
assert isinstance(loss_feat, torch.Tensor) and isinstance(loss.item(), float) | |
class TestGeneratorAdversarialLoss: | |
def test_hinge_generator_adv_loss(self): | |
adv_loss = get_adv_criterion(loss_type='hinge') | |
t0 = torch.randn(1, 2, 0) | |
t1 = torch.FloatTensor([1.0, 2.0, 3.0]) | |
assert adv_loss(t0).item() == 0.0 | |
assert adv_loss(t1).item() == -2.0 | |
def test_mse_generator_adv_loss(self): | |
adv_loss = get_adv_criterion(loss_type='mse') | |
t0 = torch.randn(1, 2, 0) | |
t1 = torch.FloatTensor([1.0, 1.0, 1.0]) | |
t2 = torch.FloatTensor([2.0, 5.0, 5.0]) | |
assert adv_loss(t0).item() == 0.0 | |
assert adv_loss(t1).item() == 0.0 | |
assert adv_loss(t2).item() == 11.0 | |
class TestDiscriminatorAdversarialLoss: | |
def _disc_loss(self, loss_type: str, fake: torch.Tensor, real: torch.Tensor): | |
disc_loss_real = get_real_criterion(loss_type) | |
disc_loss_fake = get_fake_criterion(loss_type) | |
loss = disc_loss_fake(fake) + disc_loss_real(real) | |
return loss | |
def test_hinge_discriminator_adv_loss(self): | |
loss_type = 'hinge' | |
t0 = torch.FloatTensor([0.0, 0.0, 0.0]) | |
t1 = torch.FloatTensor([1.0, 2.0, 3.0]) | |
assert self._disc_loss(loss_type, t0, t0).item() == 2.0 | |
assert self._disc_loss(loss_type, t1, t1).item() == 3.0 | |
def test_mse_discriminator_adv_loss(self): | |
loss_type = 'mse' | |
t0 = torch.FloatTensor([0.0, 0.0, 0.0]) | |
t1 = torch.FloatTensor([1.0, 1.0, 1.0]) | |
assert self._disc_loss(loss_type, t0, t0).item() == 1.0 | |
assert self._disc_loss(loss_type, t1, t0).item() == 2.0 | |
class TestFeatureMatchingLoss: | |
def test_features_matching_loss_base(self): | |
ft_matching_loss = FeatureMatchingLoss() | |
length = random.randrange(1, 100_000) | |
t1 = torch.randn(1, 2, length) | |
loss = ft_matching_loss([t1], [t1]) | |
assert isinstance(loss, torch.Tensor) | |
assert loss.item() == 0.0 | |
def test_features_matching_loss_raises_exception(self): | |
ft_matching_loss = FeatureMatchingLoss() | |
length = random.randrange(1, 100_000) | |
t1 = torch.randn(1, 2, length) | |
t2 = torch.randn(1, 2, length + 1) | |
with pytest.raises(AssertionError): | |
ft_matching_loss([], []) | |
with pytest.raises(AssertionError): | |
ft_matching_loss([t1], [t1, t1]) | |
with pytest.raises(AssertionError): | |
ft_matching_loss([t1], [t2]) | |
def test_features_matching_loss_output(self): | |
loss_nonorm = FeatureMatchingLoss(normalize=False) | |
loss_layer_normed = FeatureMatchingLoss(normalize=True) | |
length = random.randrange(1, 100_000) | |
t1 = torch.randn(1, 2, length) | |
t2 = torch.randn(1, 2, length) | |
assert loss_nonorm([t1, t2], [t1, t2]).item() == 0.0 | |
assert loss_layer_normed([t1, t2], [t1, t2]).item() == 0.0 | |
t3 = torch.FloatTensor([1.0, 2.0, 3.0]) | |
t4 = torch.FloatTensor([2.0, 10.0, 3.0]) | |
assert loss_nonorm([t3], [t4]).item() == 3.0 | |
assert loss_nonorm([t3, t3], [t4, t4]).item() == 6.0 | |
assert loss_layer_normed([t3], [t4]).item() == 3.0 | |
assert loss_layer_normed([t3, t3], [t4, t4]).item() == 3.0 | |