chroma / chromadb /test /property /test_embeddings.py
badalsahani's picture
feat: chroma initial deploy
287a0bc
import pytest
import logging
import hypothesis.strategies as st
from hypothesis import given
from typing import Dict, Set, cast, Union, DefaultDict, Any, List
from dataclasses import dataclass
from chromadb.api.types import ID, Include, IDs, validate_embeddings
import chromadb.errors as errors
from chromadb.api import ServerAPI
from chromadb.api.models.Collection import Collection
import chromadb.test.property.strategies as strategies
from hypothesis.stateful import (
Bundle,
RuleBasedStateMachine,
MultipleResults,
rule,
initialize,
precondition,
consumes,
run_state_machine_as_test,
multiple,
invariant,
)
from collections import defaultdict
import chromadb.test.property.invariants as invariants
import numpy as np
traces: DefaultDict[str, int] = defaultdict(lambda: 0)
def trace(key: str) -> None:
global traces
traces[key] += 1
def print_traces() -> None:
global traces
for key, value in traces.items():
print(f"{key}: {value}")
dtype_shared_st: st.SearchStrategy[
Union[np.float16, np.float32, np.float64]
] = st.shared(st.sampled_from(strategies.float_types), key="dtype")
dimension_shared_st: st.SearchStrategy[int] = st.shared(
st.integers(min_value=2, max_value=2048), key="dimension"
)
@dataclass
class EmbeddingStateMachineStates:
initialize = "initialize"
add_embeddings = "add_embeddings"
delete_by_ids = "delete_by_ids"
update_embeddings = "update_embeddings"
upsert_embeddings = "upsert_embeddings"
collection_st = st.shared(strategies.collections(with_hnsw_params=True), key="coll")
class EmbeddingStateMachine(RuleBasedStateMachine):
collection: Collection
embedding_ids: Bundle[ID] = Bundle("embedding_ids")
def __init__(self, api: ServerAPI):
super().__init__()
self.api = api
self._rules_strategy = strategies.DeterministicRuleStrategy(self) # type: ignore
@initialize(collection=collection_st) # type: ignore
def initialize(self, collection: strategies.Collection):
self.api.reset()
self.collection = self.api.create_collection(
name=collection.name,
metadata=collection.metadata,
embedding_function=collection.embedding_function,
)
self.embedding_function = collection.embedding_function
trace("init")
self.on_state_change(EmbeddingStateMachineStates.initialize)
self.record_set_state = strategies.StateMachineRecordSet(
ids=[], metadatas=[], documents=[], embeddings=[]
)
@rule(target=embedding_ids, record_set=strategies.recordsets(collection_st))
def add_embeddings(self, record_set: strategies.RecordSet) -> MultipleResults[ID]:
trace("add_embeddings")
self.on_state_change(EmbeddingStateMachineStates.add_embeddings)
normalized_record_set: strategies.NormalizedRecordSet = invariants.wrap_all(
record_set
)
if len(normalized_record_set["ids"]) > 0:
trace("add_more_embeddings")
if not invariants.is_metadata_valid(normalized_record_set):
with pytest.raises(Exception):
self.collection.add(**normalized_record_set)
return multiple()
intersection = set(normalized_record_set["ids"]).intersection(
self.record_set_state["ids"]
)
if len(intersection) > 0:
# Partially apply the non-duplicative records to the state
new_ids = list(set(normalized_record_set["ids"]).difference(intersection))
indices = [normalized_record_set["ids"].index(id) for id in new_ids]
filtered_record_set: strategies.NormalizedRecordSet = {
"ids": [normalized_record_set["ids"][i] for i in indices],
"metadatas": [normalized_record_set["metadatas"][i] for i in indices]
if normalized_record_set["metadatas"]
else None,
"documents": [normalized_record_set["documents"][i] for i in indices]
if normalized_record_set["documents"]
else None,
"embeddings": [normalized_record_set["embeddings"][i] for i in indices]
if normalized_record_set["embeddings"]
else None,
}
self.collection.add(**normalized_record_set)
self._upsert_embeddings(cast(strategies.RecordSet, filtered_record_set))
return multiple(*filtered_record_set["ids"])
else:
self.collection.add(**normalized_record_set)
self._upsert_embeddings(cast(strategies.RecordSet, normalized_record_set))
return multiple(*normalized_record_set["ids"])
@precondition(lambda self: len(self.record_set_state["ids"]) > 20)
@rule(ids=st.lists(consumes(embedding_ids), min_size=1, max_size=20))
def delete_by_ids(self, ids: IDs) -> None:
trace("remove embeddings")
self.on_state_change(EmbeddingStateMachineStates.delete_by_ids)
indices_to_remove = [self.record_set_state["ids"].index(id) for id in ids]
self.collection.delete(ids=ids)
self._remove_embeddings(set(indices_to_remove))
# Removing the precondition causes the tests to frequently fail as "unsatisfiable"
# Using a value < 5 causes retries and lowers the number of valid samples
@precondition(lambda self: len(self.record_set_state["ids"]) >= 5)
@rule(
record_set=strategies.recordsets(
collection_strategy=collection_st,
id_strategy=embedding_ids,
min_size=1,
max_size=5,
)
)
def update_embeddings(self, record_set: strategies.RecordSet) -> None:
trace("update embeddings")
self.on_state_change(EmbeddingStateMachineStates.update_embeddings)
normalized_record_set: strategies.NormalizedRecordSet = invariants.wrap_all(
record_set
)
if not invariants.is_metadata_valid(normalized_record_set):
with pytest.raises(Exception):
self.collection.update(**normalized_record_set)
return
self.collection.update(**record_set)
self._upsert_embeddings(record_set)
# Using a value < 3 causes more retries and lowers the number of valid samples
@precondition(lambda self: len(self.record_set_state["ids"]) >= 3)
@rule(
record_set=strategies.recordsets(
collection_strategy=collection_st,
id_strategy=st.one_of(embedding_ids, strategies.safe_text),
min_size=1,
max_size=5,
)
)
def upsert_embeddings(self, record_set: strategies.RecordSet) -> None:
trace("upsert embeddings")
self.on_state_change(EmbeddingStateMachineStates.upsert_embeddings)
normalized_record_set: strategies.NormalizedRecordSet = invariants.wrap_all(
record_set
)
if not invariants.is_metadata_valid(normalized_record_set):
with pytest.raises(Exception):
self.collection.upsert(**normalized_record_set)
return
self.collection.upsert(**record_set)
self._upsert_embeddings(record_set)
@invariant()
def count(self) -> None:
invariants.count(
self.collection, cast(strategies.RecordSet, self.record_set_state)
)
@invariant()
def no_duplicates(self) -> None:
invariants.no_duplicates(self.collection)
@invariant()
def ann_accuracy(self) -> None:
invariants.ann_accuracy(
collection=self.collection,
record_set=cast(strategies.RecordSet, self.record_set_state),
min_recall=0.95,
embedding_function=self.embedding_function,
)
@invariant()
def fields_match(self) -> None:
self.record_set_state = cast(strategies.RecordSet, self.record_set_state)
invariants.embeddings_match(self.collection, self.record_set_state)
invariants.metadatas_match(self.collection, self.record_set_state)
invariants.documents_match(self.collection, self.record_set_state)
def _upsert_embeddings(self, record_set: strategies.RecordSet) -> None:
normalized_record_set: strategies.NormalizedRecordSet = invariants.wrap_all(
record_set
)
for idx, id in enumerate(normalized_record_set["ids"]):
# Update path
if id in self.record_set_state["ids"]:
target_idx = self.record_set_state["ids"].index(id)
if normalized_record_set["embeddings"] is not None:
self.record_set_state["embeddings"][
target_idx
] = normalized_record_set["embeddings"][idx]
else:
assert normalized_record_set["documents"] is not None
assert self.embedding_function is not None
self.record_set_state["embeddings"][
target_idx
] = self.embedding_function(
[normalized_record_set["documents"][idx]]
)[
0
]
if normalized_record_set["metadatas"] is not None:
# Sqlite merges the metadata, as opposed to old
# implementations which overwrites it
record_set_state = self.record_set_state["metadatas"][target_idx]
if record_set_state is not None:
record_set_state = cast(
Dict[str, Union[str, int, float]], record_set_state
)
record_set_state.update(normalized_record_set["metadatas"][idx])
if normalized_record_set["documents"] is not None:
self.record_set_state["documents"][
target_idx
] = normalized_record_set["documents"][idx]
else:
# Add path
self.record_set_state["ids"].append(id)
if normalized_record_set["embeddings"] is not None:
self.record_set_state["embeddings"].append(
normalized_record_set["embeddings"][idx]
)
else:
assert self.embedding_function is not None
assert normalized_record_set["documents"] is not None
self.record_set_state["embeddings"].append(
self.embedding_function(
[normalized_record_set["documents"][idx]]
)[0]
)
if normalized_record_set["metadatas"] is not None:
self.record_set_state["metadatas"].append(
normalized_record_set["metadatas"][idx]
)
else:
self.record_set_state["metadatas"].append(None)
if normalized_record_set["documents"] is not None:
self.record_set_state["documents"].append(
normalized_record_set["documents"][idx]
)
else:
self.record_set_state["documents"].append(None)
def _remove_embeddings(self, indices_to_remove: Set[int]) -> None:
indices_list = list(indices_to_remove)
indices_list.sort(reverse=True)
for i in indices_list:
del self.record_set_state["ids"][i]
del self.record_set_state["embeddings"][i]
del self.record_set_state["metadatas"][i]
del self.record_set_state["documents"][i]
def on_state_change(self, new_state: str) -> None:
pass
def test_embeddings_state(caplog: pytest.LogCaptureFixture, api: ServerAPI) -> None:
caplog.set_level(logging.ERROR)
run_state_machine_as_test(lambda: EmbeddingStateMachine(api)) # type: ignore
print_traces()
def test_multi_add(api: ServerAPI) -> None:
api.reset()
coll = api.create_collection(name="foo")
coll.add(ids=["a"], embeddings=[[0.0]])
assert coll.count() == 1
# after the sqlite refactor - add silently ignores duplicates, no exception is raised
# partial adds are supported - i.e we will add whatever we can in the request
coll.add(ids=["a"], embeddings=[[0.0]])
assert coll.count() == 1
results = coll.get()
assert results["ids"] == ["a"]
coll.delete(ids=["a"])
assert coll.count() == 0
def test_dup_add(api: ServerAPI) -> None:
api.reset()
coll = api.create_collection(name="foo")
with pytest.raises(errors.DuplicateIDError):
coll.add(ids=["a", "a"], embeddings=[[0.0], [1.1]])
with pytest.raises(errors.DuplicateIDError):
coll.upsert(ids=["a", "a"], embeddings=[[0.0], [1.1]])
def test_query_without_add(api: ServerAPI) -> None:
api.reset()
coll = api.create_collection(name="foo")
fields: Include = ["documents", "metadatas", "embeddings", "distances"]
N = np.random.randint(1, 2000)
K = np.random.randint(1, 100)
results = coll.query(
query_embeddings=np.random.random((N, K)).tolist(), include=fields
)
for field in fields:
field_results = results[field]
assert field_results is not None
assert all([len(result) == 0 for result in field_results])
def test_get_non_existent(api: ServerAPI) -> None:
api.reset()
coll = api.create_collection(name="foo")
result = coll.get(ids=["a"], include=["documents", "metadatas", "embeddings"])
assert len(result["ids"]) == 0
assert len(result["metadatas"]) == 0
assert len(result["documents"]) == 0
assert len(result["embeddings"]) == 0
# TODO: Use SQL escaping correctly internally
@pytest.mark.xfail(reason="We don't properly escape SQL internally, causing problems")
def test_escape_chars_in_ids(api: ServerAPI) -> None:
api.reset()
id = "\x1f"
coll = api.create_collection(name="foo")
coll.add(ids=[id], embeddings=[[0.0]])
assert coll.count() == 1
coll.delete(ids=[id])
assert coll.count() == 0
@pytest.mark.parametrize(
"kwargs",
[
{},
{"ids": []},
{"where": {}},
{"where_document": {}},
{"where_document": {}, "where": {}},
],
)
def test_delete_empty_fails(api: ServerAPI, kwargs: dict):
api.reset()
coll = api.create_collection(name="foo")
with pytest.raises(Exception) as e:
coll.delete(**kwargs)
assert "You must provide either ids, where, or where_document to delete." in str(e)
@pytest.mark.parametrize(
"kwargs",
[
{"ids": ["foo"]},
{"where": {"foo": "bar"}},
{"where_document": {"$contains": "bar"}},
{"ids": ["foo"], "where": {"foo": "bar"}},
{"ids": ["foo"], "where_document": {"$contains": "bar"}},
{
"ids": ["foo"],
"where": {"foo": "bar"},
"where_document": {"$contains": "bar"},
},
],
)
def test_delete_success(api: ServerAPI, kwargs: dict):
api.reset()
coll = api.create_collection(name="foo")
# Should not raise
coll.delete(**kwargs)
@given(supported_types=st.sampled_from([np.float32, np.int32, np.int64, int, float]))
def test_autocasting_validate_embeddings_for_compatible_types(
supported_types: List[Any],
) -> None:
embds = strategies.create_embeddings(10, 10, supported_types)
validated_embeddings = validate_embeddings(Collection._normalize_embeddings(embds))
assert all(
[
isinstance(value, list)
and all(
[
isinstance(vec, (int, float)) and not isinstance(vec, bool)
for vec in value
]
)
for value in validated_embeddings
]
)
@given(supported_types=st.sampled_from([np.float32, np.int32, np.int64, int, float]))
def test_autocasting_validate_embeddings_with_ndarray(
supported_types: List[Any],
) -> None:
embds = strategies.create_embeddings_ndarray(10, 10, supported_types)
validated_embeddings = validate_embeddings(Collection._normalize_embeddings(embds))
assert all(
[
isinstance(value, list)
and all(
[
isinstance(vec, (int, float)) and not isinstance(vec, bool)
for vec in value
]
)
for value in validated_embeddings
]
)
@given(unsupported_types=st.sampled_from([str, bool]))
def test_autocasting_validate_embeddings_incompatible_types(
unsupported_types: List[Any],
) -> None:
embds = strategies.create_embeddings(10, 10, unsupported_types)
with pytest.raises(ValueError) as e:
validate_embeddings(Collection._normalize_embeddings(embds))
assert "Expected each value in the embedding to be a int or float" in str(e)
def test_0dim_embedding_validation() -> None:
embds = [[]]
with pytest.raises(ValueError) as e:
validate_embeddings(embds)
assert "Expected each embedding in the embeddings to be a non-empty list" in str(e)