refaudio / app.py
ewebspace's picture
Create app.py
e37c124 verified
import os
import tempfile
import warnings
warnings.filterwarnings("ignore")
import gradio as gr
import numpy as np
import soundfile as sf
import librosa
from huggingface_hub import snapshot_download
# ------------------------------
# Model bootstrap
# ------------------------------
MODEL_DIR = os.path.join(os.getcwd(), "models")
OPENVOICE_REPO = "myshell-ai/OpenVoiceV2"
os.makedirs(MODEL_DIR, exist_ok=True)
# Lazy import to speed up Space boot
_openvoice_loaded = False
_tone_converter = None
_content_extractor = None
_demucs_model = None
def _ensure_openvoice():
global _openvoice_loaded, _tone_converter, _content_extractor
if _openvoice_loaded:
return
# Download model snapshots into ./models/openvoice
local_dir = snapshot_download(repo_id=OPENVOICE_REPO, local_dir=os.path.join(MODEL_DIR, "openvoice"), local_dir_use_symlinks=False)
# OpenVoice v2 layout ships python modules; import after download
import sys
if local_dir not in sys.path:
sys.path.append(local_dir)
# Import OpenVoice components
try:
from openvoice import se_extractor
from openvoice.api import ToneColorConverter, ContentVec
except Exception:
# Fallback to module paths used in some snapshots
from tone_color_converter.api import ToneColorConverter
from contentvec.api import ContentVec
from se_extractor import se_extractor
# Init content extractor (HuBERT-like)
content_ckpt = os.path.join(local_dir, "checkpoints", "contentvec", "checkpoint.pth")
_content_extractor = ContentVec(content_ckpt)
# Init tone color converter
tcc_ckpt = os.path.join(local_dir, "checkpoints", "tone_color_converter", "checkpoint.pth")
_tone_converter = ToneColorConverter(tcc_ckpt, device=os.environ.get("DEVICE", "cuda" if gr.cuda.is_available() else "cpu"))
_openvoice_loaded = True
def _ensure_demucs():
global _demucs_model
if _demucs_model is not None:
return
from demucs.apply import apply_model
from demucs.pretrained import get_model
from demucs.audio import AudioFile
_demucs_model = {
"apply_model": apply_model,
"get_model": get_model,
"AudioFile": AudioFile,
}
def separate_vocals(wav_path, stem="vocals"):
"""Return path to separated vocals and accompaniment using htdemucs."""
_ensure_demucs()
apply_model = _demucs_model["apply_model"]
get_model = _demucs_model["get_model"]
AudioFile = _demucs_model["AudioFile"]
model = get_model(name="htdemucs")
model.cpu()
with AudioFile(wav_path).read(streams=0, samplerate=44100, channels=2) as mix:
ref = mix
out = apply_model(model, ref, shifts=1, split=True, overlap=0.25)
sources = {name: out[idx] for idx, name in enumerate(model.sources)}
# Save stems
base = os.path.splitext(os.path.basename(wav_path))[0]
out_dir = tempfile.mkdtemp(prefix="stems_")
vocal_path = os.path.join(out_dir, f"{base}_vocals.wav")
inst_path = os.path.join(out_dir, f"{base}_inst.wav")
sf.write(vocal_path, sources["vocals"].T, 44100)
# Combine other stems for instrumental
inst = sum([v for k, v in sources.items() if k != "vocals"]) / (len(model.sources) - 1)
sf.write(inst_path, inst.T, 44100)
return vocal_path, inst_path
def load_audio(x, sr=44100, mono=True):
y, _sr = librosa.load(x, sr=sr, mono=mono)
return y, sr
def save_audio(y, sr):
path = tempfile.mktemp(suffix=".wav")
sf.write(path, y, sr)
return path
def match_length(a, b):
# Pad/trim a to match length of b
if len(a) < len(b):
a = np.pad(a, (0, len(b)-len(a)))
else:
a = a[:len(b)]
return a
def convert_voice(reference_wav, source_vocal_wav, style_strength=0.8, pitch_shift=0.0, formant_shift=0.0):
_ensure_openvoice()
# Load audio
ref, sr = load_audio(reference_wav, sr=16000, mono=True)
src, _ = load_audio(source_vocal_wav, sr=16000, mono=True)
# Extract content features from source
content = _content_extractor.extract(src, sr)
# Extract speaker embedding / tone color from reference
# OpenVoice ships an SE (speaker encoder) util; we mimic via API if exposed.
try:
from openvoice import se_extractor
se = se_extractor.get_se(reference_wav, device=_tone_converter.device)
except Exception:
# Some snapshots provide a function name get_se_wav
from se_extractor import get_se
se = get_se(reference_wav)
# Run tone color conversion
converted = _tone_converter.convert(content, se, style_strength=style_strength)
y = converted
# Optional pitch & formant adjustments (light touch)
if abs(pitch_shift) > 1e-3:
y = librosa.effects.pitch_shift(y.astype(np.float32), 16000, n_steps=pitch_shift)
if abs(formant_shift) > 1e-3:
# crude formant-esque EQ tilt using shelving filter via librosa
import scipy.signal as sps
w = 2 * np.pi * 1500 / 16000
b, a = sps.iirfilter(2, Wn=w/np.pi, btype='high', ftype='but