import os import tempfile import warnings warnings.filterwarnings("ignore") import gradio as gr import numpy as np import soundfile as sf import librosa from huggingface_hub import snapshot_download # ------------------------------ # Model bootstrap # ------------------------------ MODEL_DIR = os.path.join(os.getcwd(), "models") OPENVOICE_REPO = "myshell-ai/OpenVoiceV2" os.makedirs(MODEL_DIR, exist_ok=True) # Lazy import to speed up Space boot _openvoice_loaded = False _tone_converter = None _content_extractor = None _demucs_model = None def _ensure_openvoice(): global _openvoice_loaded, _tone_converter, _content_extractor if _openvoice_loaded: return # Download model snapshots into ./models/openvoice local_dir = snapshot_download(repo_id=OPENVOICE_REPO, local_dir=os.path.join(MODEL_DIR, "openvoice"), local_dir_use_symlinks=False) # OpenVoice v2 layout ships python modules; import after download import sys if local_dir not in sys.path: sys.path.append(local_dir) # Import OpenVoice components try: from openvoice import se_extractor from openvoice.api import ToneColorConverter, ContentVec except Exception: # Fallback to module paths used in some snapshots from tone_color_converter.api import ToneColorConverter from contentvec.api import ContentVec from se_extractor import se_extractor # Init content extractor (HuBERT-like) content_ckpt = os.path.join(local_dir, "checkpoints", "contentvec", "checkpoint.pth") _content_extractor = ContentVec(content_ckpt) # Init tone color converter tcc_ckpt = os.path.join(local_dir, "checkpoints", "tone_color_converter", "checkpoint.pth") _tone_converter = ToneColorConverter(tcc_ckpt, device=os.environ.get("DEVICE", "cuda" if gr.cuda.is_available() else "cpu")) _openvoice_loaded = True def _ensure_demucs(): global _demucs_model if _demucs_model is not None: return from demucs.apply import apply_model from demucs.pretrained import get_model from demucs.audio import AudioFile _demucs_model = { "apply_model": apply_model, "get_model": get_model, "AudioFile": AudioFile, } def separate_vocals(wav_path, stem="vocals"): """Return path to separated vocals and accompaniment using htdemucs.""" _ensure_demucs() apply_model = _demucs_model["apply_model"] get_model = _demucs_model["get_model"] AudioFile = _demucs_model["AudioFile"] model = get_model(name="htdemucs") model.cpu() with AudioFile(wav_path).read(streams=0, samplerate=44100, channels=2) as mix: ref = mix out = apply_model(model, ref, shifts=1, split=True, overlap=0.25) sources = {name: out[idx] for idx, name in enumerate(model.sources)} # Save stems base = os.path.splitext(os.path.basename(wav_path))[0] out_dir = tempfile.mkdtemp(prefix="stems_") vocal_path = os.path.join(out_dir, f"{base}_vocals.wav") inst_path = os.path.join(out_dir, f"{base}_inst.wav") sf.write(vocal_path, sources["vocals"].T, 44100) # Combine other stems for instrumental inst = sum([v for k, v in sources.items() if k != "vocals"]) / (len(model.sources) - 1) sf.write(inst_path, inst.T, 44100) return vocal_path, inst_path def load_audio(x, sr=44100, mono=True): y, _sr = librosa.load(x, sr=sr, mono=mono) return y, sr def save_audio(y, sr): path = tempfile.mktemp(suffix=".wav") sf.write(path, y, sr) return path def match_length(a, b): # Pad/trim a to match length of b if len(a) < len(b): a = np.pad(a, (0, len(b)-len(a))) else: a = a[:len(b)] return a def convert_voice(reference_wav, source_vocal_wav, style_strength=0.8, pitch_shift=0.0, formant_shift=0.0): _ensure_openvoice() # Load audio ref, sr = load_audio(reference_wav, sr=16000, mono=True) src, _ = load_audio(source_vocal_wav, sr=16000, mono=True) # Extract content features from source content = _content_extractor.extract(src, sr) # Extract speaker embedding / tone color from reference # OpenVoice ships an SE (speaker encoder) util; we mimic via API if exposed. try: from openvoice import se_extractor se = se_extractor.get_se(reference_wav, device=_tone_converter.device) except Exception: # Some snapshots provide a function name get_se_wav from se_extractor import get_se se = get_se(reference_wav) # Run tone color conversion converted = _tone_converter.convert(content, se, style_strength=style_strength) y = converted # Optional pitch & formant adjustments (light touch) if abs(pitch_shift) > 1e-3: y = librosa.effects.pitch_shift(y.astype(np.float32), 16000, n_steps=pitch_shift) if abs(formant_shift) > 1e-3: # crude formant-esque EQ tilt using shelving filter via librosa import scipy.signal as sps w = 2 * np.pi * 1500 / 16000 b, a = sps.iirfilter(2, Wn=w/np.pi, btype='high', ftype='but