Spaces:
Runtime error
Runtime error
import threading | |
from request_llm.bridge_chatgpt import predict_no_ui_long_connection | |
from toolbox import CatchException, write_results_to_file, report_execption | |
def extract_code_block_carefully(txt): | |
splitted = txt.split('```') | |
n_code_block_seg = len(splitted) - 1 | |
if n_code_block_seg <= 1: return txt | |
# 剩下的情况都开头除去 ``` 结尾除去一次 ``` | |
txt_out = '```'.join(splitted[1:-1]) | |
return txt_out | |
def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit, must_break_at_empty_line=True): | |
def cut(txt_tocut, must_break_at_empty_line): # 递归 | |
if get_token_fn(txt_tocut) <= limit: | |
return [txt_tocut] | |
else: | |
lines = txt_tocut.split('\n') | |
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines) | |
estimated_line_cut = int(estimated_line_cut) | |
for cnt in reversed(range(estimated_line_cut)): | |
if must_break_at_empty_line: | |
if lines[cnt] != "": continue | |
print(cnt) | |
prev = "\n".join(lines[:cnt]) | |
post = "\n".join(lines[cnt:]) | |
if get_token_fn(prev) < limit: break | |
if cnt == 0: | |
print('what the f?') | |
raise RuntimeError("存在一行极长的文本!") | |
print(len(post)) | |
# 列表递归接龙 | |
result = [prev] | |
result.extend(cut(post, must_break_at_empty_line)) | |
return result | |
try: | |
return cut(txt, must_break_at_empty_line=True) | |
except RuntimeError: | |
return cut(txt, must_break_at_empty_line=False) | |
def break_txt_into_half_at_some_linebreak(txt): | |
lines = txt.split('\n') | |
n_lines = len(lines) | |
pre = lines[:(n_lines//2)] | |
post = lines[(n_lines//2):] | |
return "\n".join(pre), "\n".join(post) | |
def 全项目切换英文(txt, top_p, temperature, chatbot, history, sys_prompt, WEB_PORT): | |
# 第1步:清空历史,以免输入溢出 | |
history = [] | |
# 第2步:尝试导入依赖,如果缺少依赖,则给出安装建议 | |
try: | |
import openai, transformers | |
except: | |
report_execption(chatbot, history, | |
a = f"解析项目: {txt}", | |
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade openai transformers```。") | |
yield chatbot, history, '正常' | |
return | |
# 第3步:集合文件 | |
import time, glob, os, shutil, re, openai | |
os.makedirs('gpt_log/generated_english_version', exist_ok=True) | |
os.makedirs('gpt_log/generated_english_version/crazy_functions', exist_ok=True) | |
file_manifest = [f for f in glob.glob('./*.py') if ('test_project' not in f) and ('gpt_log' not in f)] + \ | |
[f for f in glob.glob('./crazy_functions/*.py') if ('test_project' not in f) and ('gpt_log' not in f)] | |
# file_manifest = ['./toolbox.py'] | |
i_say_show_user_buffer = [] | |
# 第4步:随便显示点什么防止卡顿的感觉 | |
for index, fp in enumerate(file_manifest): | |
# if 'test_project' in fp: continue | |
with open(fp, 'r', encoding='utf-8') as f: | |
file_content = f.read() | |
i_say_show_user =f'[{index}/{len(file_manifest)}] 接下来请将以下代码中包含的所有中文转化为英文,只输出转化后的英文代码,请用代码块输出代码: {os.path.abspath(fp)}' | |
i_say_show_user_buffer.append(i_say_show_user) | |
chatbot.append((i_say_show_user, "[Local Message] 等待多线程操作,中间过程不予显示.")) | |
yield chatbot, history, '正常' | |
# 第5步:Token限制下的截断与处理 | |
MAX_TOKEN = 3000 | |
from transformers import GPT2TokenizerFast | |
print('加载tokenizer中') | |
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2") | |
get_token_fn = lambda txt: len(tokenizer(txt)["input_ids"]) | |
print('加载tokenizer结束') | |
# 第6步:任务函数 | |
mutable_return = [None for _ in file_manifest] | |
observe_window = [[""] for _ in file_manifest] | |
def thread_worker(fp,index): | |
if index > 10: | |
time.sleep(60) | |
print('Openai 限制免费用户每分钟20次请求,降低请求频率中。') | |
with open(fp, 'r', encoding='utf-8') as f: | |
file_content = f.read() | |
i_say_template = lambda fp, file_content: f'接下来请将以下代码中包含的所有中文转化为英文,只输出代码,文件名是{fp},文件代码是 ```{file_content}```' | |
try: | |
gpt_say = "" | |
# 分解代码文件 | |
file_content_breakdown = breakdown_txt_to_satisfy_token_limit(file_content, get_token_fn, MAX_TOKEN) | |
for file_content_partial in file_content_breakdown: | |
i_say = i_say_template(fp, file_content_partial) | |
# # ** gpt request ** | |
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, top_p=top_p, temperature=temperature, history=[], sys_prompt=sys_prompt, observe_window=observe_window[index]) | |
gpt_say_partial = extract_code_block_carefully(gpt_say_partial) | |
gpt_say += gpt_say_partial | |
mutable_return[index] = gpt_say | |
except ConnectionAbortedError as token_exceed_err: | |
print('至少一个线程任务Token溢出而失败', e) | |
except Exception as e: | |
print('至少一个线程任务意外失败', e) | |
# 第7步:所有线程同时开始执行任务函数 | |
handles = [threading.Thread(target=thread_worker, args=(fp,index)) for index, fp in enumerate(file_manifest)] | |
for h in handles: | |
h.daemon = True | |
h.start() | |
chatbot.append(('开始了吗?', f'多线程操作已经开始')) | |
yield chatbot, history, '正常' | |
# 第8步:循环轮询各个线程是否执行完毕 | |
cnt = 0 | |
while True: | |
cnt += 1 | |
time.sleep(0.2) | |
th_alive = [h.is_alive() for h in handles] | |
if not any(th_alive): break | |
# 更好的UI视觉效果 | |
observe_win = [] | |
for thread_index, alive in enumerate(th_alive): | |
observe_win.append("[ ..."+observe_window[thread_index][0][-60:].replace('\n','').replace('```','...').replace(' ','.').replace('<br/>','.....').replace('$','.')+"... ]") | |
stat = [f'执行中: {obs}\n\n' if alive else '已完成\n\n' for alive, obs in zip(th_alive, observe_win)] | |
stat_str = ''.join(stat) | |
chatbot[-1] = (chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1))) | |
yield chatbot, history, '正常' | |
# 第9步:把结果写入文件 | |
for index, h in enumerate(handles): | |
h.join() # 这里其实不需要join了,肯定已经都结束了 | |
fp = file_manifest[index] | |
gpt_say = mutable_return[index] | |
i_say_show_user = i_say_show_user_buffer[index] | |
where_to_relocate = f'gpt_log/generated_english_version/{fp}' | |
if gpt_say is not None: | |
with open(where_to_relocate, 'w+', encoding='utf-8') as f: | |
f.write(gpt_say) | |
else: # 失败 | |
shutil.copyfile(file_manifest[index], where_to_relocate) | |
chatbot.append((i_say_show_user, f'[Local Message] 已完成{os.path.abspath(fp)}的转化,\n\n存入{os.path.abspath(where_to_relocate)}')) | |
history.append(i_say_show_user); history.append(gpt_say) | |
yield chatbot, history, '正常' | |
time.sleep(1) | |
# 第10步:备份一个文件 | |
res = write_results_to_file(history) | |
chatbot.append(("生成一份任务执行报告", res)) | |
yield chatbot, history, '正常' | |