evelyn / FastChat /fastchat /train /train_yuan2.py
evelyn-lo's picture
Upload folder using huggingface_hub
37c870e verified
raw
history blame
16.8 kB
# This code is based on tatsu-lab/stanford_alpaca. Below is the original copyright:
#
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
import json
import math
import pathlib
from typing import Dict, Optional, Sequence
import numpy as np
import torch
from torch.utils.data import Dataset
import transformers
from transformers import Trainer
from transformers.trainer_pt_utils import LabelSmoother
from fastchat.conversation import SeparatorStyle
from fastchat.model.model_adapter import get_conversation_template
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
trust_remote_code: bool = field(
default=False,
metadata={
"help": "Whether or not to allow for custom models defined on the Hub in their own modeling files"
},
)
padding_side: str = field(
default="right", metadata={"help": "The padding side in tokenizer"}
)
@dataclass
class DataArguments:
data_path: str = field(
default=None, metadata={"help": "Path to the training data."}
)
eval_data_path: str = field(
default=None, metadata={"help": "Path to the evaluation data."}
)
lazy_preprocess: bool = False
last_response_loss: bool = False
split_example_loss: bool = False
efficient_loss: bool = False
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=512,
metadata={
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
local_rank = None
def rank0_print(*args):
if local_rank == 0:
print(*args)
def trainer_save_model_safe(trainer: transformers.Trainer):
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import StateDictType, FullStateDictConfig
save_policy = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
with FSDP.state_dict_type(
trainer.model, StateDictType.FULL_STATE_DICT, save_policy
):
trainer.save_model()
# add by wpf for yuan test
def right_replace(string, old, new, max=1):
return string[::-1].replace(old[::-1], new[::-1], max)[::-1]
def preprocess(
sources,
tokenizer: transformers.PreTrainedTokenizer,
data_args,
) -> Dict:
conv = get_conversation_template("yuan2") # wpf
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
# Apply prompt templates
conversations = []
for i, source in enumerate(sources):
if roles[source[0]["from"]] != conv.roles[0]:
# Skip the first one if it is not from human
source = source[1:]
conv.messages = []
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
assert role == conv.roles[j % 2], f"{i}"
conv.append_message(role, sentence["value"])
conversations.append(conv.get_prompt())
if data_args.last_response_loss:
a = conversations[0].replace("<sep>", "<eod>")
a = right_replace(a, "<n>", "<sep>")
# a=right_replace(a,"<n>","\n",max=20)
conversations[0] = a
if data_args.split_example_loss:
a = conversations[0].replace("<sep>", "")
a = a.split("<n>")
for i in range(int(len(a) / 2)):
if i == 0:
conversations[i] = ""
if i != 0:
conversations.append("")
for j in range(i * 2):
conversations[i] = conversations[i] + a[j] + "<n>"
conversations[i] = (
conversations[i] + a[i * 2] + "<sep>" + a[i * 2 + 1] + "<eod>"
)
if data_args.efficient_loss:
a = conversations[0].replace("<sep>", "<eod>")
conversations[0] = a
print(conversations)
# Tokenize conversations
input_ids = tokenizer(
conversations,
return_tensors="pt",
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
).input_ids
targets = input_ids.clone()
# assert conv.sep_style == SeparatorStyle.ADD_COLON_TWO #wpf
# Mask targets. Only compute loss on the assistant outputs.
# sep = conv.sep + conv.roles[1] + ": " #wpf
if data_args.split_example_loss:
for conversation, target in zip(conversations, targets):
total_len = int(target.ne(tokenizer.pad_token_id).sum())
turns = conversation.split("<sep>")
cur_len = 1
target[:cur_len] = IGNORE_TOKEN_ID
for i, turn in enumerate(turns):
if turn == "":
break
if i == 0 or i == len(turns) - 1:
turn_len = len(tokenizer(turn).input_ids)
else:
turn_len = len(tokenizer(turn).input_ids) + 1
# parts = turn.split(sep)
# if len(parts) != 2:
# break
# parts[0] += sep
# "-2" is hardcoded for the Llama tokenizer to make the offset correct.
instruction_len = 0
if i == len(turns) - 1:
instruction_len = turn_len
target[cur_len : cur_len + instruction_len] = IGNORE_TOKEN_ID
cur_len += turn_len
target[cur_len:] = IGNORE_TOKEN_ID
# print("cur_len: ", cur_len)
# print("total_len: ", total_len)
if False: # Inspect and check the correctness of masking
z = target.clone()
z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z)
rank0_print(tokenizer.decode(z))
exit()
if cur_len < tokenizer.model_max_length:
if cur_len != total_len:
target[:] = IGNORE_TOKEN_ID
rank0_print(
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
f" #turn = {len(turns) - 1}. (ignored)"
)
if data_args.efficient_loss:
for conversation, target in zip(conversations, targets):
total_len = int(target.ne(tokenizer.pad_token_id).sum())
turns = conversation.split("<n>")
cur_len = 1
target[:cur_len] = IGNORE_TOKEN_ID
for i, turn in enumerate(turns):
if turn == "":
break
if i == 0 or i == len(turns) - 1:
turn_len = len(tokenizer(turn).input_ids)
else:
turn_len = len(tokenizer(turn).input_ids) + 1
# parts = turn.split(sep)
# if len(parts) != 2:
# break
# parts[0] += sep
# "-2" is hardcoded for the Llama tokenizer to make the offset correct.
instruction_len = 0
if i % 2 == 0:
instruction_len = turn_len
# if i != 0 and not tokenizer.legacy:
# # The legacy and non-legacy modes handle special tokens differently
# instruction_len -= 1
# Ignore the user instructions
target[cur_len : cur_len + instruction_len] = IGNORE_TOKEN_ID
cur_len += turn_len
if i != 0 and not tokenizer.legacy:
# The legacy and non-legacy modes handle special tokens differently
cur_len -= 1
target[cur_len:] = IGNORE_TOKEN_ID
# print("cur_len: ", cur_len)
# print("total_len: ", total_len)
if False: # Inspect and check the correctness of masking
z = target.clone()
z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z)
rank0_print(tokenizer.decode(z))
exit()
if cur_len < tokenizer.model_max_length:
if cur_len != total_len:
target[:] = IGNORE_TOKEN_ID
rank0_print(
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
f" #turn = {len(turns) - 1}. (ignored)"
)
if data_args.last_response_loss:
for conversation, target in zip(conversations, targets):
total_len = int(target.ne(tokenizer.pad_token_id).sum())
turns = conversation.split("<sep>")
cur_len = 1
target[:cur_len] = IGNORE_TOKEN_ID
for i, turn in enumerate(turns):
if turn == "":
break
if i == 0 or i == len(turns) - 1:
turn_len = len(tokenizer(turn).input_ids)
else:
turn_len = len(tokenizer(turn).input_ids) + 1
# parts = turn.split(sep)
# if len(parts) != 2:
# break
# parts[0] += sep
# "-2" is hardcoded for the Llama tokenizer to make the offset correct.
instruction_len = 0
if i == len(turns) - 1:
instruction_len = turn_len
# if i != 0 and not tokenizer.legacy:
# # The legacy and non-legacy modes handle special tokens differently
# instruction_len -= 1
# Ignore the user instructions
target[cur_len : cur_len + instruction_len] = IGNORE_TOKEN_ID
cur_len += turn_len
# if i != 0 and not tokenizer.legacy:
# # The legacy and non-legacy modes handle special tokens differently
# cur_len -= 1
target[cur_len:] = IGNORE_TOKEN_ID
# print("cur_len: ", cur_len)
# print("total_len: ", total_len)
if False: # Inspect and check the correctness of masking
z = target.clone()
z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z)
rank0_print(tokenizer.decode(z))
exit()
if cur_len < tokenizer.model_max_length:
if cur_len != total_len:
target[:] = IGNORE_TOKEN_ID
rank0_print(
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
f" #turn = {len(turns) - 1}. (ignored)"
)
return dict(
input_ids=input_ids,
labels=targets,
attention_mask=input_ids.ne(tokenizer.pad_token_id),
)
class SupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(
self, raw_data, data_args, tokenizer: transformers.PreTrainedTokenizer
):
super(SupervisedDataset, self).__init__()
rank0_print("Formatting inputs...")
sources = [example["conversations"] for example in raw_data]
data_dict = preprocess(sources, tokenizer, data_args)
self.input_ids = data_dict["input_ids"]
self.labels = data_dict["labels"]
self.attention_mask = data_dict["attention_mask"]
def __len__(self):
return len(self.input_ids)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
return dict(
input_ids=self.input_ids[i],
labels=self.labels[i],
attention_mask=self.attention_mask[i],
)
class LazySupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(
self, raw_data, data_args, tokenizer: transformers.PreTrainedTokenizer
):
super(LazySupervisedDataset, self).__init__()
self.tokenizer = tokenizer
rank0_print("Formatting inputs...Skip in lazy mode")
self.tokenizer = tokenizer
self.raw_data = raw_data
self.data_args = data_args
self.cached_data_dict = {}
def __len__(self):
return len(self.raw_data)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
if i in self.cached_data_dict:
return self.cached_data_dict[i]
ret = preprocess(
[self.raw_data[i]["conversations"]], self.tokenizer, self.data_args
)
ret = dict(
input_ids=ret["input_ids"][0],
labels=ret["labels"][0],
attention_mask=ret["attention_mask"][0],
)
self.cached_data_dict[i] = ret
return ret
def make_supervised_data_module(
tokenizer: transformers.PreTrainedTokenizer, data_args
) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
dataset_cls = (
LazySupervisedDataset if data_args.lazy_preprocess else SupervisedDataset
)
rank0_print("Loading data...")
train_json = json.load(open(data_args.data_path, "r"))
train_dataset = dataset_cls(train_json, data_args, tokenizer=tokenizer)
if data_args.eval_data_path:
eval_json = json.load(open(data_args.eval_data_path, "r"))
eval_dataset = dataset_cls(eval_json, data_args, tokenizer=tokenizer)
else:
eval_dataset = None
return dict(train_dataset=train_dataset, eval_dataset=eval_dataset)
def train():
global local_rank
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments)
)
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
local_rank = training_args.local_rank
# Set RoPE scaling factor
config = transformers.AutoConfig.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
trust_remote_code=model_args.trust_remote_code,
)
orig_ctx_len = getattr(config, "max_position_embeddings", None)
if orig_ctx_len and training_args.model_max_length > orig_ctx_len:
scaling_factor = float(math.ceil(training_args.model_max_length / orig_ctx_len))
config.rope_scaling = {"type": "linear", "factor": scaling_factor}
config.use_cache = False
# Load model and tokenizer
model = transformers.AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
config=config,
cache_dir=training_args.cache_dir,
trust_remote_code=model_args.trust_remote_code,
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side=model_args.padding_side,
use_fast=False,
trust_remote_code=model_args.trust_remote_code,
)
if tokenizer.pad_token != tokenizer.unk_token:
tokenizer.pad_token = tokenizer.unk_token
tokenizer.add_tokens(
[
"<eod>",
"<sep>",
"<pad>",
"<mask>",
"<predict>",
"<FIM_SUFFIX>",
"<FIM_PREFIX>",
"<FIM_MIDDLE>",
"<commit_before>",
"<commit_msg>",
"<commit_after>",
"<jupyter_start>",
"<jupyter_text>",
"<jupyter_code>",
"<jupyter_output>",
"<empty_output>",
],
special_tokens=True,
)
# Load data
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
# Start trainner
trainer = Trainer(
model=model, tokenizer=tokenizer, args=training_args, **data_module
)
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
# Save model
model.config.use_cache = True
trainer.save_state()
if trainer.is_deepspeed_enabled:
trainer.save_model()
else:
trainer_save_model_safe(trainer)
if __name__ == "__main__":
train()