Spaces:
Running
Running
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""sMAPE - Symmetric Mean Absolute Percentage Error Metric""" | |
import datasets | |
import numpy as np | |
from sklearn.metrics._regression import _check_reg_targets | |
from sklearn.utils.validation import check_consistent_length | |
import evaluate | |
_CITATION = """\ | |
@article{article, | |
author = {Chen, Zhuo and Yang, Yuhong}, | |
year = {2004}, | |
month = {04}, | |
pages = {}, | |
title = {Assessing forecast accuracy measures} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Symmetric Mean Absolute Percentage Error (sMAPE) is the symmetric mean percentage error | |
difference between the predicted and actual values as defined by Chen and Yang (2004), | |
based on the metric by Armstrong (1985) and Makridakis (1993). | |
""" | |
_KWARGS_DESCRIPTION = """ | |
Args: | |
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Estimated target values. | |
references: array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Ground truth (correct) target values. | |
sample_weight: array-like of shape (n_samples,), default=None | |
Sample weights. | |
multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" | |
Defines aggregating of multiple output values. Array-like value defines weights used to average errors. | |
"raw_values" : Returns a full set of errors in case of multioutput input. | |
"uniform_average" : Errors of all outputs are averaged with uniform weight. | |
Returns: | |
smape : symmetric mean absolute percentage error. | |
If multioutput is "raw_values", then symmetric mean absolute percentage error is returned for each output separately. If multioutput is "uniform_average" or an ndarray of weights, then the weighted average of all output errors is returned. | |
sMAPE output is non-negative floating point in the range (0, 2). The best value is 0.0. | |
Examples: | |
>>> smape_metric = evaluate.load("smape") | |
>>> predictions = [2.5, 0.0, 2, 8] | |
>>> references = [3, -0.5, 2, 7] | |
>>> results = smape_metric.compute(predictions=predictions, references=references) | |
>>> print(results) | |
{'smape': 0.5787878787878785} | |
If you're using multi-dimensional lists, then set the config as follows : | |
>>> smape_metric = evaluate.load("smape", "multilist") | |
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]] | |
>>> references = [[0.1, 2], [-1, 2], [8, -5]] | |
>>> results = smape_metric.compute(predictions=predictions, references=references) | |
>>> print(results) | |
{'smape': 0.49696969558995985} | |
>>> results = smape_metric.compute(predictions=predictions, references=references, multioutput='raw_values') | |
>>> print(results) | |
{'smape': array([0.48888889, 0.50505051])} | |
""" | |
def symmetric_mean_absolute_percentage_error(y_true, y_pred, *, sample_weight=None, multioutput="uniform_average"): | |
"""Symmetric Mean absolute percentage error (sMAPE) metric using sklearn's api and helpers. | |
Parameters | |
---------- | |
y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Ground truth (correct) target values. | |
y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Estimated target values. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
multioutput : {'raw_values', 'uniform_average'} or array-like | |
Defines aggregating of multiple output values. | |
Array-like value defines weights used to average errors. | |
If input is list then the shape must be (n_outputs,). | |
'raw_values' : | |
Returns a full set of errors in case of multioutput input. | |
'uniform_average' : | |
Errors of all outputs are averaged with uniform weight. | |
Returns | |
------- | |
loss : float or ndarray of floats | |
If multioutput is 'raw_values', then mean absolute percentage error | |
is returned for each output separately. | |
If multioutput is 'uniform_average' or an ndarray of weights, then the | |
weighted average of all output errors is returned. | |
sMAPE output is non-negative floating point. The best value is 0.0. | |
""" | |
y_type, y_true, y_pred, multioutput = _check_reg_targets(y_true, y_pred, multioutput) | |
check_consistent_length(y_true, y_pred, sample_weight) | |
epsilon = np.finfo(np.float64).eps | |
smape = 2 * np.abs(y_pred - y_true) / (np.maximum(np.abs(y_true), epsilon) + np.maximum(np.abs(y_pred), epsilon)) | |
output_errors = np.average(smape, weights=sample_weight, axis=0) | |
if isinstance(multioutput, str): | |
if multioutput == "raw_values": | |
return output_errors | |
elif multioutput == "uniform_average": | |
# pass None as weights to np.average: uniform mean | |
multioutput = None | |
return np.average(output_errors, weights=multioutput) | |
class Smape(evaluate.Metric): | |
def _info(self): | |
return evaluate.MetricInfo( | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
features=datasets.Features(self._get_feature_types()), | |
reference_urls=["https://robjhyndman.com/hyndsight/smape/"], | |
) | |
def _get_feature_types(self): | |
if self.config_name == "multilist": | |
return { | |
"predictions": datasets.Sequence(datasets.Value("float")), | |
"references": datasets.Sequence(datasets.Value("float")), | |
} | |
else: | |
return { | |
"predictions": datasets.Value("float"), | |
"references": datasets.Value("float"), | |
} | |
def _compute(self, predictions, references, sample_weight=None, multioutput="uniform_average"): | |
smape_score = symmetric_mean_absolute_percentage_error( | |
references, | |
predictions, | |
sample_weight=sample_weight, | |
multioutput=multioutput, | |
) | |
return {"smape": smape_score} | |