accuracy / README.md
lvwerra's picture
lvwerra HF staff
Update Space (evaluate main: 828c6327)
7332944
---
title: Accuracy
emoji: 🤗
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 3.0.2
app_file: app.py
pinned: false
tags:
- evaluate
- metric
---
# Metric Card for Accuracy
## Metric Description
Accuracy is the proportion of correct predictions among the total number of cases processed. It can be computed with:
Accuracy = (TP + TN) / (TP + TN + FP + FN)
Where:
TP: True positive
TN: True negative
FP: False positive
FN: False negative
## How to Use
At minimum, this metric requires predictions and references as inputs.
```python
>>> accuracy_metric = evaluate.load("accuracy")
>>> results = accuracy_metric.compute(references=[0, 1], predictions=[0, 1])
>>> print(results)
{'accuracy': 1.0}
```
### Inputs
- **predictions** (`list` of `int`): Predicted labels.
- **references** (`list` of `int`): Ground truth labels.
- **normalize** (`boolean`): If set to False, returns the number of correctly classified samples. Otherwise, returns the fraction of correctly classified samples. Defaults to True.
- **sample_weight** (`list` of `float`): Sample weights Defaults to None.
### Output Values
- **accuracy**(`float` or `int`): Accuracy score. Minimum possible value is 0. Maximum possible value is 1.0, or the number of examples input, if `normalize` is set to `True`.. A higher score means higher accuracy.
Output Example(s):
```python
{'accuracy': 1.0}
```
This metric outputs a dictionary, containing the accuracy score.
#### Values from Popular Papers
Top-1 or top-5 accuracy is often used to report performance on supervised classification tasks such as image classification (e.g. on [ImageNet](https://paperswithcode.com/sota/image-classification-on-imagenet)) or sentiment analysis (e.g. on [IMDB](https://paperswithcode.com/sota/text-classification-on-imdb)).
### Examples
Example 1-A simple example
```python
>>> accuracy_metric = evaluate.load("accuracy")
>>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0])
>>> print(results)
{'accuracy': 0.5}
```
Example 2-The same as Example 1, except with `normalize` set to `False`.
```python
>>> accuracy_metric = evaluate.load("accuracy")
>>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0], normalize=False)
>>> print(results)
{'accuracy': 3.0}
```
Example 3-The same as Example 1, except with `sample_weight` set.
```python
>>> accuracy_metric = evaluate.load("accuracy")
>>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0], sample_weight=[0.5, 2, 0.7, 0.5, 9, 0.4])
>>> print(results)
{'accuracy': 0.8778625954198473}
```
## Limitations and Bias
This metric can be easily misleading, especially in the case of unbalanced classes. For example, a high accuracy might be because a model is doing well, but if the data is unbalanced, it might also be because the model is only accurately labeling the high-frequency class. In such cases, a more detailed analysis of the model's behavior, or the use of a different metric entirely, is necessary to determine how well the model is actually performing.
## Citation(s)
```bibtex
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
```
## Further References