Tt2 / builder.sh
euIaxs22's picture
Upload 7 files
153afc8 verified
#!/usr/bin/env bash
set -euo pipefail
echo "🚀 Builder (FlashAttn LayerNorm extra + Apex + Q8) — runtime com GPU visível"
# ===== Config e diretórios =====
export SELF_HF_REPO_ID="${SELF_HF_REPO_ID:-euIaxs22/Aduc-sdr}" # Repo no HF para wheels
export HF_HOME="${HF_HOME:-/app/model_cache}"
export HF_HUB_CACHE="${HF_HUB_CACHE:-$HF_HOME/hub}"
export TORCH_HOME="${TORCH_HOME:-$HF_HOME/torch}"
export HF_HUB_ENABLE_HF_TRANSFER="${HF_HUB_ENABLE_HF_TRANSFER:-1}"
export PATH="$HOME/.local/bin:$PATH"
mkdir -p /app/wheels /app/cuda_cache "$HF_HOME" "$TORCH_HOME" /app/wheels/src
chmod -R 777 /app/wheels || true
export CUDA_CACHE_PATH="/app/cuda_cache"
# Preserva licença NGC (se existir)
if [ -f "/NGC-DL-CONTAINER-LICENSE" ]; then
cp -f /NGC-DL-CONTAINER-LICENSE /app/wheels/NGC-DL-CONTAINER-LICENSE || true
fi
# ===== Dependências mínimas =====
python -m pip install -v -U pip build setuptools wheel hatchling hatch-vcs scikit-build-core cmake ninja packaging "huggingface_hub[hf_transfer]" || true
# ===== Tags de ambiente (Python/CUDA/Torch) =====
PY_TAG="$(python -c 'import sys; print(f"cp{sys.version_info[0]}{sys.version_info[1]}")' 2>/dev/null || echo cp310)"
TORCH_VER="$(python - <<'PY'
try:
import torch, re
v = torch.__version__
print(re.sub(r'\+.*$', '', v))
except Exception:
print("unknown")
PY
)"
CU_TAG="$(python - <<'PY'
try:
import torch
cu = getattr(torch.version, "cuda", None)
print("cu"+cu.replace(".","")) if cu else print("")
except Exception:
print("")
PY
)"
echo "[env] PY_TAG=${PY_TAG} TORCH_VER=${TORCH_VER} CU_TAG=${CU_TAG}"
# ============================================================================
# CHECKERS
# ============================================================================
# Checa especificamente o módulo nativo requerido pelo layer_norm (sem checar 'flash-attn' geral)
check_flash_layer_norm_bin () {
python - <<'PY'
import importlib
ok = False
# extensões conhecidas produzidas por csrc/layer_norm
for name in [
"dropout_layer_norm", # nome do módulo nativo
"flash_attn.ops.layer_norm", # wrapper python que usa o nativo
"flash_attn.ops.rms_norm", # pode depender do mesmo backend em alguns empacotamentos
]:
try:
importlib.import_module(name)
ok = True
break
except Exception:
pass
raise SystemExit(0 if ok else 1)
PY
}
check_apex () {
python - <<'PY'
try:
from apex.normalization import FusedLayerNorm
import importlib; importlib.import_module("fused_layer_norm_cuda")
ok = True
except Exception:
ok = False
raise SystemExit(0 if ok else 1)
PY
}
check_q8 () {
python - <<'PY'
import importlib.util
spec = importlib.util.find_spec("ltx_q8_kernels") or importlib.util.find_spec("q8_kernels")
raise SystemExit(0 if spec else 1)
PY
}
# ============================================================================
# DOWNLOAD DO HUB (GENÉRICO)
# ============================================================================
# Instala uma wheel do HF por prefixo simples (ex.: apex-, q8_kernels-)
install_from_hf_by_prefix () {
local PREFIX="$1"
echo "[hub] Procurando wheels '${PREFIX}-*.whl' em ${SELF_HF_REPO_ID} com tags ${PY_TAG}/${CU_TAG}"
python - "$PREFIX" "$PY_TAG" "$CU_TAG" <<'PY' || exit 0
import os, sys
from huggingface_hub import HfApi, hf_hub_download, HfFolder
prefix, py_tag, cu_tag = sys.argv[1], sys.argv[2], sys.argv[3]
repo = os.environ.get("SELF_HF_REPO_ID","euIaxs22/Aduc-sdr")
api = HfApi(token=os.getenv("HF_TOKEN") or HfFolder.get_token())
try:
files = api.list_repo_files(repo_id=repo, repo_type="model")
except Exception:
raise SystemExit(0)
def match(name: str) -> bool:
return name.endswith(".whl") and name.rsplit("/",1)[-1].startswith(prefix + "-") and (py_tag in name)
cands = [f for f in files if match(f)]
pref = [f for f in cands if cu_tag and cu_tag in f] or cands
if not pref:
raise SystemExit(0)
target = sorted(pref, reverse=True)[0]
print(target)
path = hf_hub_download(repo_id=repo, filename=target, repo_type="model", local_dir="/app/wheels")
print(path)
PY
}
# Instala wheels do submódulo layer_norm aceitando variantes de nome
install_flash_layer_norm_from_hf () {
echo "[hub] Procurando wheels FlashAttention LayerNorm em ${SELF_HF_REPO_ID}"
python - "$PY_TAG" "$CU_TAG" <<'PY' || exit 0
import os, sys, re
from huggingface_hub import HfApi, hf_hub_download, HfFolder
py_tag, cu_tag = sys.argv[1], sys.argv[2]
repo = os.environ.get("SELF_HF_REPO_ID","euIaxs22/Aduc-sdr")
api = HfApi(token=os.getenv("HF_TOKEN") or HfFolder.get_token())
try:
files = api.list_repo_files(repo_id=repo, repo_type="model")
except Exception:
raise SystemExit(0)
pats = [
r"^flash[_-]?attn[_-]?.*layer[_-]?norm-.*\.whl$",
r"^dropout[_-]?layer[_-]?norm-.*\.whl$",
]
def ok(fn: str) -> bool:
name = fn.rsplit("/",1)[-1]
if py_tag not in name: return False
return any(re.search(p, name, flags=re.I) for p in pats)
cands = [f for f in files if ok(f)]
pref = [f for f in cands if cu_tag and cu_tag in f] or cands
if not pref:
raise SystemExit(0)
target = sorted(pref, reverse=True)[0]
print(target)
path = hf_hub_download(repo_id=repo, filename=target, repo_type="model", local_dir="/app/wheels")
print(path)
PY
}
# ============================================================================
# BUILDERS
# ============================================================================
# Passo extra: SIEMPRE tenta instalar o submódulo layer_norm via wheel do HF;
# se não houver wheel compatível, compila a partir de csrc/layer_norm e gera wheel.
build_or_install_flash_layer_norm () {
echo "[flow] === FlashAttn LayerNorm (passo extra) ==="
# 1) Tentar instalar wheel do HF primeiro (evita recompilar)
HF_OUT="$(install_flash_layer_norm_from_hf || true)"
if [ -n "${HF_OUT:-}" ]; then
WHEEL_PATH="$(printf "%s\n" "${HF_OUT}" | tail -n1)"
echo "[hub] Baixado: ${WHEEL_PATH}"
python -m pip install -v -U --no-build-isolation --no-deps "${WHEEL_PATH}" || true
if check_flash_layer_norm_bin; then
echo "[flow] FlashAttn LayerNorm: OK via wheel do Hub"
return 0
fi
echo "[flow] Wheel do Hub não resolveu import; seguirá com build"
else
echo "[hub] Nenhuma wheel compatível encontrada para FlashAttn LayerNorm"
fi
# 2) Build from source do submódulo csrc/layer_norm -> wheel
local SRC="/app/wheels/src/flash-attn"
echo "[build] Preparando fonte FlashAttention (layer_norm) em ${SRC}"
if [ -d "$SRC/.git" ]; then
git -C "$SRC" fetch --all -p || true
git -C "$SRC" reset --hard origin/main || true
git -C "$SRC" clean -fdx || true
else
rm -rf "$SRC"
git clone --depth 1 https://github.com/Dao-AILab/flash-attention "$SRC"
fi
# Define CC alvo a partir da GPU ativa (reduz tempo/ruído de build)
export TORCH_CUDA_ARCH_LIST="$(python - <<'PY'
import torch
try:
cc = "%d.%d" % torch.cuda.get_device_capability(0)
print(cc)
except Exception:
print("8.9") # fallback p/ Ada (L40S) caso build sem GPU visível
PY
)"
echo "[build] TORCH_CUDA_ARCH_LIST=${TORCH_CUDA_ARCH_LIST}"
pushd "$SRC/csrc/layer_norm" >/dev/null
export MAX_JOBS="${MAX_JOBS:-90}"
# Gera wheel reutilizável
python -m pip wheel -v --no-build-isolation --no-deps . -w /app/wheels || true
popd >/dev/null
# Instala a wheel gerada
local W="$(ls -t /app/wheels/*flash*attn*layer*norm*-*.whl 2>/dev/null | head -n1 || true)"
if [ -z "${W}" ]; then
W="$(ls -t /app/wheels/*dropout*layer*norm*-*.whl 2>/dev/null | head -n1 || true)"
fi
if [ -z "${W}" ]; then
# fallback para qualquer .whl recém gerado
W="$(ls -t /app/wheels/*.whl 2>/dev/null | head -n1 || true)"
fi
if [ -n "${W}" ]; then
python -m pip install -v -U --no-deps "${W}" || true
echo "[build] FlashAttn LayerNorm instalado da wheel: ${W}"
else
echo "[build] Nenhuma wheel gerada; instalando direto do source (último recurso)"
python -m pip install -v --no-build-isolation "$SRC/csrc/layer_norm" || true
fi
# Checagem final do binário
if check_flash_layer_norm_bin; then
echo "[flow] FlashAttn LayerNorm: import OK após build"
return 0
fi
echo "[flow] FlashAttn LayerNorm: falhou import após build"
return 1
}
build_apex () {
local SRC="/app/wheels/src/apex"
echo "[build] Preparando fonte Apex em ${SRC}"
if [ -d "$SRC/.git" ]; then
git -C "$SRC" fetch --all -p || true
git -C "$SRC" reset --hard HEAD || true
git -C "$SRC" clean -fdx || true
else
rm -rf "$SRC"
git clone --depth 1 https://github.com/NVIDIA/apex "$SRC"
fi
echo "[build] Compilando Apex -> wheel"
export APEX_CPP_EXT=1 APEX_CUDA_EXT=1 APEX_ALL_CONTRIB_EXT=0
python -m pip wheel -v --no-build-isolation --no-deps "$SRC" -w /app/wheels || true
local W="$(ls -t /app/wheels/apex-*.whl 2>/dev/null | head -n1 || true)"
if [ -n "${W}" ]; then
python -m pip install -v -U --no-deps "${W}" || true
echo "[build] Apex instalado da wheel recém-compilada: ${W}"
else
echo "[build] Nenhuma wheel Apex gerada; instalando do source"
python -m pip install -v --no-build-isolation "$SRC" || true
fi
}
Q8_REPO="${Q8_REPO:-https://github.com/Lightricks/LTX-Video-Q8-Kernels.git}"
Q8_COMMIT="${Q8_COMMIT:-f3066edea210082799ca5a2bbf9ef0321c5dd8fc}"
build_q8 () {
local SRC="/app/wheels/src/q8_kernels"
rm -rf "$SRC"
git clone --filter=blob:none "$Q8_REPO" "$SRC"
git -C "$SRC" checkout "$Q8_COMMIT"
git -C "$SRC" submodule update --init --recursive
echo "[build] Compilando Q8 Kernels -> wheel"
python -m pip wheel -v --no-build-isolation "$SRC" -w /app/wheels || true
local W="$(ls -t /app/wheels/q8_kernels-*.whl 2>/dev/null | head -n1 || true)"
if [ -n "${W}" ]; then
python -m pip install -v -U --no-deps "${W}" || true
echo "[build] Q8 instalado da wheel recém-compilada: ${W}"
else
echo "[build] Nenhuma wheel q8_kernels gerada; instalando do source"
python -m pip install -v --no-build-isolation "$SRC" || true
fi
}
# ============================================================================
# EXECUÇÃO
# ============================================================================
# Passo adicional SEM depender de "flash-attn" já instalado: trata somente o layer_norm
build_or_install_flash_layer_norm || true
# Apex (mantido)
# Tenta primeiro via wheel no HF e, se não houver, compila e instala em wheel
echo "[flow] === apex ==="
HF_OUT="$(install_from_hf_by_prefix "apex" || true)"
if [ -n "${HF_OUT:-}" ]; then
WHEEL_PATH="$(printf "%s\n" "${HF_OUT}" | tail -n1)"
echo "[hub] Baixado: ${WHEEL_PATH}"
python -m pip install -v -U --no-build-isolation "${WHEEL_PATH}" || true
if ! check_apex; then
echo "[flow] apex: import falhou após wheel; compilando"
build_apex || true
fi
else
echo "[hub] Nenhuma wheel apex compatível; compilando"
build_apex || true
fi
# Q8 (opcional)
# echo "[flow] === q8_kernels ==="
# HF_OUT="$(install_from_hf_by_prefix "q8_kernels" || true)"
# if [ -n "${HF_OUT:-}" ]; then
# WHEEL_PATH="$(printf "%s\n" "${HF_OUT}" | tail -n1)"
# echo "[hub] Baixado: ${WHEEL_PATH}"
# python -m pip install -v -U --no-build-isolation "${WHEEL_PATH}" || true
# if ! check_q8; then
# echo "[flow] q8_kernels: import falhou após wheel; compilando"
# build_q8 || true
# fi
# else
# echo "[hub] Nenhuma wheel q8_kernels compatível; compilando"
# build_q8 || true
# fi
# Upload de wheels produzidas para o HF (cache cross-restarts)
python - <<'PY'
import os
from huggingface_hub import HfApi, HfFolder
repo = os.environ.get("SELF_HF_REPO_ID","euIaxs22/Aduc-sdr")
token = os.getenv("HF_TOKEN") or HfFolder.get_token()
if not token:
raise SystemExit("HF_TOKEN ausente; upload desabilitado")
api = HfApi(token=token)
api.upload_folder(
folder_path="/app/wheels",
repo_id=repo,
repo_type="model",
allow_patterns=["*.whl","NGC-DL-CONTAINER-LICENSE"],
ignore_patterns=["**/src/**","**/*.log","**/logs/**",".git/**"],
)
print("Upload concluído (wheels + licença).")
PY
chmod -R 777 /app/wheels || true
echo "✅ Builder finalizado."