Upload 7 files
Browse files- Dockerfile +119 -0
- README.md +208 -6
- app.py +212 -0
- builder.sh +351 -0
- info.sh +154 -0
- requirements.txt +50 -0
- start.sh +97 -0
Dockerfile
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# =============================================================================
|
| 2 |
+
# ADUC-SDR Video Suite — High-Perf Diffusers for 8× L40S (SM 8.9)
|
| 3 |
+
# CUDA 12.8 | PyTorch 2.8.0+cu128 | Ubuntu 22.04
|
| 4 |
+
# =============================================================================
|
| 5 |
+
FROM nvidia/cuda:12.8.0-devel-ubuntu22.04
|
| 6 |
+
|
| 7 |
+
LABEL maintainer="Carlos Rodrigues dos Santos & Development Partner"
|
| 8 |
+
LABEL description="High-performance Diffusers stack with FA2/SDPA, 8×L40S"
|
| 9 |
+
LABEL version="4.4.0"
|
| 10 |
+
LABEL cuda_version="12.8.0"
|
| 11 |
+
LABEL python_version="3.10"
|
| 12 |
+
LABEL pytorch_version="2.8.0+cu128"
|
| 13 |
+
LABEL gpu_optimized_for="8x_NVIDIA_L40S"
|
| 14 |
+
|
| 15 |
+
# ---------------- Core env & caches ----------------
|
| 16 |
+
ENV DEBIAN_FRONTEND=noninteractive TZ=UTC LANG=C.UTF-8 LC_ALL=C.UTF-8 \
|
| 17 |
+
PYTHONUNBUFFERED=1 PYTHONDONTWRITEBYTECODE=1 \
|
| 18 |
+
PIP_NO_CACHE_DIR=1 PIP_DISABLE_PIP_VERSION_CHECK=1
|
| 19 |
+
|
| 20 |
+
# GPU/Compute
|
| 21 |
+
ENV NVIDIA_VISIBLE_DEVICES=all
|
| 22 |
+
ENV CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
|
| 23 |
+
ENV TORCH_CUDA_ARCH_LIST="8.9"
|
| 24 |
+
ENV CUDA_DEVICE_ORDER=PCI_BUS_ID
|
| 25 |
+
ENV CUDA_DEVICE_MAX_CONNECTIONS=32
|
| 26 |
+
|
| 27 |
+
# Threads
|
| 28 |
+
ENV OMP_NUM_THREADS=8 MKL_NUM_THREADS=8 MAX_JOBS=160
|
| 29 |
+
|
| 30 |
+
# Alloc/caches
|
| 31 |
+
ENV PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:512,garbage_collection_threshold:0.8
|
| 32 |
+
ENV CUDA_LAUNCH_BLOCKING=0 CUDA_CACHE_MAXSIZE=2147483648 CUDA_CACHE_DISABLE=0
|
| 33 |
+
|
| 34 |
+
# Hugging Face caches
|
| 35 |
+
ENV APP_HOME=/app
|
| 36 |
+
WORKDIR $APP_HOME
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
ENV MODELS_DIR=/app/models
|
| 40 |
+
RUN mkdir -p /home/user/.cache/models && ln -sf /home/user/.cache/models /app/models
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
# ---------------- Sistema & Python ----------------
|
| 45 |
+
RUN apt-get update && apt-get install -y --no-install-recommends \
|
| 46 |
+
build-essential tree cmake git git-lfs curl wget ffmpeg ninja-build \
|
| 47 |
+
python3.10 python3.10-dev python3.10-distutils python3-pip \
|
| 48 |
+
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
| 49 |
+
|
| 50 |
+
RUN ln -sf /usr/bin/python3.10 /usr/bin/python3 && \
|
| 51 |
+
ln -sf /usr/bin/python3.10 /usr/bin/python && \
|
| 52 |
+
python3 -m pip install --upgrade pip
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
# ---------------- PyTorch cu128 (pinado) ----------------
|
| 56 |
+
RUN pip install --index-url https://download.pytorch.org/whl/cu128 \
|
| 57 |
+
torch==2.8.0+cu128 torchvision==0.23.0+cu128 torchaudio==2.8.0+cu128
|
| 58 |
+
|
| 59 |
+
# ---------------- Toolchain, Triton, FA2 (sem bnb) ----------------
|
| 60 |
+
RUN pip install packaging ninja cmake pybind11 scikit-build cython hf_transfer numpy==1.24.4
|
| 61 |
+
|
| 62 |
+
# Triton 3.x (sem triton.ops)
|
| 63 |
+
RUN pip uninstall -y triton || true && \
|
| 64 |
+
pip install -v --no-build-isolation triton==3.4.0
|
| 65 |
+
|
| 66 |
+
# FlashAttention 2.8.x
|
| 67 |
+
RUN pip install flash-attn==2.8.3 --no-build-isolation || \
|
| 68 |
+
pip install flash-attn==2.8.2 --no-build-isolation || \
|
| 69 |
+
pip install flash-attn==2.8.1 --no-build-isolation || \
|
| 70 |
+
pip install flash-attn==2.8.0.post2 --no-build-isolation
|
| 71 |
+
|
| 72 |
+
# Diffusers/Transformers estáveis (sem dev)
|
| 73 |
+
RUN pip install --no-cache-dir diffusers==0.31.0 transformers==4.44.2 accelerate==0.34.2 omegaconf==2.3.0
|
| 74 |
+
|
| 75 |
+
# Opcional: seu fork de otimizações
|
| 76 |
+
RUN pip install -U git+https://github.com/carlex22/diffusers-aduc-sdr
|
| 77 |
+
|
| 78 |
+
# ---------------- Dependências da aplicação ----------------
|
| 79 |
+
COPY requirements.txt ./requirements.txt
|
| 80 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 81 |
+
|
| 82 |
+
RUN pip install --upgrade bitsandbytes
|
| 83 |
+
|
| 84 |
+
# Scripts e configs
|
| 85 |
+
COPY info.sh ./app/info.sh
|
| 86 |
+
COPY builder.sh ./app/builder.sh
|
| 87 |
+
COPY start_seedvr.sh ./app/start_seedvr.sh
|
| 88 |
+
|
| 89 |
+
# ---------------- Código e permissões ----------------
|
| 90 |
+
COPY . .
|
| 91 |
+
RUN useradd -m -u 1000 -s /bin/bash appuser && \
|
| 92 |
+
chown -R appuser:appuser /app && \
|
| 93 |
+
chmod 0755 /app/start_seedvr.sh /app/info.sh /app/builder.sh || true
|
| 94 |
+
|
| 95 |
+
USER appuser
|
| 96 |
+
|
| 97 |
+
# Declara volume persistente para HF Spaces
|
| 98 |
+
VOLUME /data
|
| 99 |
+
|
| 100 |
+
# Env vars para caches em /data
|
| 101 |
+
ENV HF_HOME=/data/.cache/huggingface
|
| 102 |
+
ENV TORCH_HOME=/data/.cache/torch
|
| 103 |
+
ENV HF_DATASETS_CACHE=/data/.cache/datasets
|
| 104 |
+
ENV TRANSFORMERS_CACHE=/data/.cache/transformers
|
| 105 |
+
ENV DIFFUSERS_CACHE=/data/.cache/diffusers
|
| 106 |
+
ENV HF_HUB_ENABLE_HF_TRANSFER=1
|
| 107 |
+
ENV TOKENIZERS_PARALLELISM=false
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
VOLUME ["/data/.cache/huggingface/hub", "/data/ckpt/VINCIE-3B" ]
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
# ---------------- Entry ----------------
|
| 118 |
+
ENTRYPOINT ["/app/start.sh"]
|
| 119 |
+
CMD [""]
|
README.md
CHANGED
|
@@ -1,10 +1,212 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: docker
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
---
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Euia-AducSdr
|
| 3 |
+
emoji: 🎥
|
| 4 |
+
colorFrom: indigo
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: docker
|
| 7 |
+
app_file: app.py
|
| 8 |
+
pinned: true
|
| 9 |
+
license: agpl-3.0
|
| 10 |
+
setup_file: setup.sh
|
| 11 |
+
short_description: Uma implementação aberta e funcional da arquitetura ADUC-SDR
|
| 12 |
---
|
| 13 |
|
| 14 |
+
|
| 15 |
+
### 🇧🇷 Português
|
| 16 |
+
|
| 17 |
+
Uma implementação aberta e funcional da arquitetura ADUC-SDR (Arquitetura de Unificação Compositiva - Escala Dinâmica e Resiliente), projetada para a geração de vídeo coerente de longa duração. Este projeto materializa os princípios de fragmentação, navegação geométrica e um mecanismo de "eco causal 4bits memoria" para garantir a continuidade física e narrativa em sequências de vídeo geradas por múltiplos modelos de IA.
|
| 18 |
+
|
| 19 |
+
**Licença:** Este projeto é licenciado sob os termos da **GNU Affero General Public License v3.0**. Isto significa que se você usar este software (ou qualquer trabalho derivado) para fornecer um serviço através de uma rede, você é **obrigado a disponibilizar o código-fonte completo** da sua versão para os usuários desse serviço.
|
| 20 |
+
|
| 21 |
+
- **Copyright (C) 4 de Agosto de 2025, Carlos Rodrigues dos Santos**
|
| 22 |
+
- Uma cópia completa da licença pode ser encontrada no arquivo [LICENSE](LICENSE).
|
| 23 |
+
|
| 24 |
+
---
|
| 25 |
+
|
| 26 |
+
### 🇬🇧 English
|
| 27 |
+
|
| 28 |
+
An open and functional implementation of the ADUC-SDR (Architecture for Compositive Unification - Dynamic and Resilient Scaling) architecture, designed for long-form coherent video generation. This project materializes the principles of fragmentation, geometric navigation, and a "causal echo 4bits memori" mechanism to ensure physical and narrative continuity in video sequences generated by multiple AI models.
|
| 29 |
+
|
| 30 |
+
**License:** This project is licensed under the terms of the **GNU Affero General Public License v3.0**. This means that if you use this software (or any derivative work) to provide a service over a network, you are **required to make the complete source code** of your version available to the users of that service.
|
| 31 |
+
|
| 32 |
+
- **Copyright (C) August 4, 2025, Carlos Rodrigues dos Santos**
|
| 33 |
+
- A full copy of the license can be found in the [LICENSE](LICENSE) file.
|
| 34 |
+
|
| 35 |
+
---
|
| 36 |
+
|
| 37 |
+
## **Aviso de Propriedade Intelectual e Patenteamento**
|
| 38 |
+
|
| 39 |
+
### **Processo de Patenteamento em Andamento (EM PORTUGUÊS):**
|
| 40 |
+
|
| 41 |
+
A arquitetura e o método **ADUC (Automated Discovery and Orchestration of Complex tasks)**, conforme descritos neste projeto e nas reivindicações associadas, estão **atualmente em processo de patenteamento**.
|
| 42 |
+
|
| 43 |
+
O titular dos direitos, Carlos Rodrigues dos Santos, está buscando proteção legal para as inovações chave da arquitetura ADUC, que incluem, mas não se limitam a:
|
| 44 |
+
|
| 45 |
+
* Fragmentação e escalonamento de solicitações que excedem limites de contexto de modelos de IA.
|
| 46 |
+
* Distribuição inteligente de sub-tarefas para especialistas heterogêneos.
|
| 47 |
+
* Gerenciamento de estado persistido com avaliação iterativa e realimentação para o planejamento de próximas etapas.
|
| 48 |
+
* Planejamento e roteamento sensível a custo, latência e requisitos de qualidade.
|
| 49 |
+
* O uso de "tokens universais" para comunicação agnóstica a modelos.
|
| 50 |
+
|
| 51 |
+
Ao utilizar este software e a arquitetura ADUC aqui implementada, você reconhece a natureza inovadora desta arquitetura e que a **reprodução ou exploração da lógica central da ADUC em sistemas independentes pode infringir direitos de patente pendente.**
|
| 52 |
+
|
| 53 |
+
---
|
| 54 |
+
|
| 55 |
+
### **Patent Pending (IN ENGLISH):**
|
| 56 |
+
|
| 57 |
+
The **ADUC (Automated Discovery and Orchestration of Complex tasks)** architecture and method, as described in this project and its associated claims, are **currently in the process of being patented.**
|
| 58 |
+
|
| 59 |
+
The rights holder, Carlos Rodrigues dos Santos, is seeking legal protection for the key innovations of the ADUC architecture, including, but not limited to:
|
| 60 |
+
|
| 61 |
+
* Fragmentation and scaling of requests exceeding AI model context limits.
|
| 62 |
+
* Intelligent distribution of sub-tasks to heterogeneous specialists.
|
| 63 |
+
* Persistent state management with iterative evaluation and feedback for planning subsequent steps.
|
| 64 |
+
* Cost, latency, and quality-aware planning and routing.
|
| 65 |
+
* The use of "universal tokens" for model-agnostic communication.
|
| 66 |
+
|
| 67 |
+
By using this software and the ADUC architecture implemented herein, you acknowledge the innovative nature of this architecture and that **the reproduction or exploitation of ADUC's core logic in independent systems may infringe upon pending patent rights.**
|
| 68 |
+
|
| 69 |
+
---
|
| 70 |
+
|
| 71 |
+
### Detalhes Técnicos e Reivindicações da ADUC
|
| 72 |
+
|
| 73 |
+
#### 🇧🇷 Definição Curta (para Tese e Patente)
|
| 74 |
+
|
| 75 |
+
**ADUC** é um *framework pré-input* e *intermediário* de **gerenciamento de prompts** que:
|
| 76 |
+
|
| 77 |
+
1. **fragmenta** solicitações acima do limite de contexto de qualquer modelo,
|
| 78 |
+
2. **escala linearmente** (processo sequencial com memória persistida),
|
| 79 |
+
3. **distribui** sub-tarefas a **especialistas** (modelos/ferramentas heterogêneos), e
|
| 80 |
+
4. **realimenta** a próxima etapa com avaliação do que foi feito/esperado (LLM diretor).
|
| 81 |
+
|
| 82 |
+
Não é um modelo; é uma **camada orquestradora** plugável antes do input de modelos existentes (texto, imagem, áudio, vídeo), usando *tokens universais* e a tecnologia atual.
|
| 83 |
+
|
| 84 |
+
#### 🇬🇧 Short Definition (for Thesis and Patent)
|
| 85 |
+
|
| 86 |
+
**ADUC** is a *pre-input* and *intermediate* **prompt management framework** that:
|
| 87 |
+
|
| 88 |
+
1. **fragments** requests exceeding any model's context limit,
|
| 89 |
+
2. **scales linearly** (sequential process with persisted memory),
|
| 90 |
+
3. **distributes** sub-tasks to **specialists** (heterogeneous models/tools), and
|
| 91 |
+
4. **feeds back** to the next step with an evaluation of what was done/expected (director LLM).
|
| 92 |
+
|
| 93 |
+
It is not a model; it is a pluggable **orchestration layer** before the input of existing models (text, image, audio, video), using *universal tokens* and current technology.
|
| 94 |
+
|
| 95 |
+
---
|
| 96 |
+
|
| 97 |
+
#### 🇧🇷 Elementos Essenciais (Telegráfico)
|
| 98 |
+
|
| 99 |
+
* **Agnóstico a modelos:** opera com qualquer LLM/difusor/API.
|
| 100 |
+
* **Pré-input manager:** recebe pedido do usuário, **divide** em blocos ≤ limite de tokens, **prioriza**, **agenda** e **roteia**.
|
| 101 |
+
* **Memória persistida:** resultados/latentes/“eco” viram **estado compartilhado** para o próximo bloco (nada é ignorado).
|
| 102 |
+
* **Especialistas:** *routers* decidem quem faz o quê (ex.: “descrição → LLM-A”, “keyframe → Img-B”, “vídeo → Vid-C”).
|
| 103 |
+
* **Controle de qualidade:** LLM diretor compara *o que fez* × *o que deveria* × *o que falta* e **regenera objetivos** do próximo fragmento.
|
| 104 |
+
* **Custo/latência-aware:** planeja pela **VRAM/tempo/custo**, não tenta “abraçar tudo de uma vez”.
|
| 105 |
+
|
| 106 |
+
#### 🇬🇧 Essential Elements (Telegraphic)
|
| 107 |
+
|
| 108 |
+
* **Model-agnostic:** operates with any LLM/diffuser/API.
|
| 109 |
+
* **Pre-input manager:** receives user request, **divides** into blocks ≤ token limit, **prioritizes**, **schedules**, and **routes**.
|
| 110 |
+
* **Persisted memory:** results/latents/“echo” become **shared state** for the next block (nothing is ignored).
|
| 111 |
+
* **Specialists:** *routers* decide who does what (e.g., “description → LLM-A”, “keyframe → Img-B”, “video → Vid-C”).
|
| 112 |
+
* **Quality control:** director LLM compares *what was done* × *what should be done* × *what is missing* and **regenerates objectives** for the next fragment.
|
| 113 |
+
* **Cost/latency-aware:** plans by **VRAM/time/cost**, does not try to “embrace everything at once”.
|
| 114 |
+
|
| 115 |
+
---
|
| 116 |
+
|
| 117 |
+
#### 🇧🇷 Reivindicações Independentes (Método e Sistema)
|
| 118 |
+
|
| 119 |
+
**Reivindicação Independente (Método) — Versão Enxuta:**
|
| 120 |
+
|
| 121 |
+
1. **Método** de **orquestração de prompts** para execução de tarefas acima do limite de contexto de modelos de IA, compreendendo:
|
| 122 |
+
(a) **receber** uma solicitação que excede um limite de tokens;
|
| 123 |
+
(b) **analisar** a solicitação por um **LLM diretor** e **fragmentá-la** em sub-tarefas ≤ limite;
|
| 124 |
+
(c) **selecionar** especialistas de execução para cada sub-tarefa com base em capacidades declaradas;
|
| 125 |
+
(d) **gerar** prompts específicos por sub-tarefa em **tokens universais**, incluindo referências ao **estado persistido** de execuções anteriores;
|
| 126 |
+
(e) **executar sequencialmente** as sub-tarefas e **persistir** suas saídas como memória (incluindo latentes/eco/artefatos);
|
| 127 |
+
(f) **avaliar** automaticamente a saída versus metas declaradas e **regenerar objetivos** do próximo fragmento;
|
| 128 |
+
(g) **iterar** (b)–(f) até que os critérios de completude sejam atendidos, produzindo o resultado agregado;
|
| 129 |
+
em que o framework **escala linearmente** no tempo e armazenamento físico, **independente** da janela de contexto dos modelos subjacentes.
|
| 130 |
+
|
| 131 |
+
**Reivindicação Independente (Sistema):**
|
| 132 |
+
|
| 133 |
+
2. **Sistema** de orquestração de prompts, compreendendo: um **planejador LLM diretor**; um **roteador de especialistas**; um **banco de estado persistido** (incl. memória cinética para vídeo); um **gerador de prompts universais**; e um **módulo de avaliação/realimentação**, acoplados por uma **API pré-input** a modelos heterogêneos.
|
| 134 |
+
|
| 135 |
+
#### 🇬🇧 Independent Claims (Method and System)
|
| 136 |
+
|
| 137 |
+
**Independent Claim (Method) — Concise Version:**
|
| 138 |
+
|
| 139 |
+
1. A **method** for **prompt orchestration** for executing tasks exceeding AI model context limits, comprising:
|
| 140 |
+
(a) **receiving** a request that exceeds a token limit;
|
| 141 |
+
(b) **analyzing** the request by a **director LLM** and **fragmenting it** into sub-tasks ≤ the limit;
|
| 142 |
+
(c) **selecting** execution specialists for each sub-task based on declared capabilities;
|
| 143 |
+
(d) **generating** specific prompts per sub-task in **universal tokens**, including references to the **persisted state** of previous executions;
|
| 144 |
+
(e) **sequentially executing** the sub-tasks and **persisting** their outputs as memory (including latents/echo/artifacts);
|
| 145 |
+
(f) **automatically evaluating** the output against declared goals and **regenerating objectives** for the next fragment;
|
| 146 |
+
(g) **iterating** (b)–(f) until completion criteria are met, producing the aggregated result;
|
| 147 |
+
wherein the framework **scales linearly** in time and physical storage, **independent** of the context window of the underlying models.
|
| 148 |
+
|
| 149 |
+
**Independent Claim (System):**
|
| 150 |
+
|
| 151 |
+
2. A prompt orchestration **system**, comprising: a **director LLM planner**; a **specialist router**; a **persisted state bank** (incl. kinetic memory for video); a **universal prompt generator**; and an **evaluation/feedback module**, coupled via a **pre-input API** to heterogeneous models.
|
| 152 |
+
|
| 153 |
+
---
|
| 154 |
+
|
| 155 |
+
#### 🇧🇷 Dependentes Úteis
|
| 156 |
+
|
| 157 |
+
* (3) Onde o roteamento considera **custo/latência/VRAM** e metas de qualidade.
|
| 158 |
+
* (4) Onde o banco de estado inclui **eco cinético** para vídeo (últimos *n* frames/latentes/fluxo).
|
| 159 |
+
* (5) Onde a avaliação usa métricas específicas por domínio (Lflow, consistência semântica, etc.).
|
| 160 |
+
* (6) Onde *tokens universais* padronizam instruções entre especialistas.
|
| 161 |
+
* (7) Onde a orquestração decide **cut vs continuous** e **corte regenerativo** (Déjà-Vu) ao editar vídeo.
|
| 162 |
+
* (8) Onde o sistema **nunca descarta** conteúdo excedente: **reagenda** em novos fragmentos.
|
| 163 |
+
|
| 164 |
+
#### 🇬🇧 Useful Dependents
|
| 165 |
+
|
| 166 |
+
* (3) Wherein routing considers **cost/latency/VRAM** and quality goals.
|
| 167 |
+
* (4) Wherein the state bank includes **kinetic echo** for video (last *n* frames/latents/flow).
|
| 168 |
+
* (5) Wherein evaluation uses domain-specific metrics (Lflow, semantic consistency, etc.).
|
| 169 |
+
* (6) Wherein *universal tokens* standardize instructions between specialists.
|
| 170 |
+
* (7) Wherein orchestration decides **cut vs continuous** and **regenerative cut** (Déjà-Vu) when editing video.
|
| 171 |
+
* (8) Wherein the system **never discards** excess content: it **reschedules** it in new fragments.
|
| 172 |
+
|
| 173 |
+
---
|
| 174 |
+
|
| 175 |
+
#### 🇧🇷 Como isso conversa com SDR (Vídeo)
|
| 176 |
+
|
| 177 |
+
* **Eco Cinético**: é um **tipo de estado persistido** consumido pelo próximo passo.
|
| 178 |
+
* **Déjà-Vu (Corte Regenerativo)**: é **uma política de orquestração** aplicada quando há edição; ADUC decide, monta os prompts certos e chama o especialista de vídeo.
|
| 179 |
+
* **Cut vs Continuous**: decisão do **diretor** com base em estado + metas; ADUC roteia e garante a sobreposição/remoção final.
|
| 180 |
+
|
| 181 |
+
#### 🇬🇧 How this Converses with SDR (Video)
|
| 182 |
+
|
| 183 |
+
* **Kinetic Echo**: is a **type of persisted state** consumed by the next step.
|
| 184 |
+
* **Déjà-Vu (Regenerative Cut)**: is an **orchestration policy** applied during editing; ADUC decides, crafts the right prompts, and calls the video specialist.
|
| 185 |
+
* **Cut vs Continuous**: decision made by the **director** based on state + goals; ADUC routes and ensures the final overlap/removal.
|
| 186 |
+
|
| 187 |
+
---
|
| 188 |
+
|
| 189 |
+
#### 🇧🇷 Mensagem Clara ao Usuário (Experiência)
|
| 190 |
+
|
| 191 |
+
> “Seu pedido excede o limite X do modelo Y. Em vez de truncar silenciosamente, o **ADUC** dividirá e **entregará 100%** do conteúdo por etapas coordenadas.”
|
| 192 |
+
|
| 193 |
+
Isso é diferencial prático e jurídico: **não-obviedade** por transformar limite de contexto em **pipeline controlado**, com **persistência de estado** e **avaliação iterativa**.
|
| 194 |
+
|
| 195 |
+
#### 🇬🇧 Clear User Message (Experience)
|
| 196 |
+
|
| 197 |
+
> "Your request exceeds model Y's limit X. Instead of silently truncating, **ADUC** will divide and **deliver 100%** of the content through coordinated steps."
|
| 198 |
+
|
| 199 |
+
This is a practical and legal differentiator: **non-obviousness** by transforming context limits into a **controlled pipeline**, with **state persistence** and **iterative evaluation**.
|
| 200 |
+
|
| 201 |
+
---
|
| 202 |
+
|
| 203 |
+
### Contact / Contato / Contacto
|
| 204 |
+
|
| 205 |
+
- **Author / Autor:** Carlos Rodrigues dos Santos
|
| 206 |
+
- **Email:** carlex22@gmail.com
|
| 207 |
+
- **GitHub:** [https://github.com/carlex22/Aduc-sdr](https://github.com/carlex22/Aduc-sdr)
|
| 208 |
+
- **Hugging Face Spaces:**
|
| 209 |
+
- [Ltx-SuperTime-60Secondos](https://huggingface.co/spaces/Carlexx/Ltx-SuperTime-60Secondos/)
|
| 210 |
+
- [Novinho](https://huggingface.co/spaces/Carlexxx/Novinho/)
|
| 211 |
+
|
| 212 |
+
---
|
app.py
ADDED
|
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, UploadFile, File, Form, BackgroundTasks, HTTPException
|
| 2 |
+
from fastapi.responses import HTMLResponse, FileResponse, JSONResponse
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import os, uuid, shutil, subprocess, time
|
| 5 |
+
|
| 6 |
+
# -------------------- Configuração de diretórios --------------------
|
| 7 |
+
def default_work_root() -> Path:
|
| 8 |
+
return Path("/data/work") if Path("/data").exists() else Path("/app/work")
|
| 9 |
+
|
| 10 |
+
WORK_ROOT = Path(os.environ.get("WORK_ROOT", default_work_root()))
|
| 11 |
+
JOBS_DIR = WORK_ROOT / "jobs"
|
| 12 |
+
JOBS_DIR.mkdir(parents=True, exist_ok=True)
|
| 13 |
+
|
| 14 |
+
# Caminhos/CLI
|
| 15 |
+
SEEDVR_SCRIPT = os.environ.get("SEEDVR_SCRIPT", "projects/inference_seedvr2_3b.py")
|
| 16 |
+
DEFAULT_PORT = os.environ.get("APP_PORT", "8000")
|
| 17 |
+
API_BASE = os.environ.get("API_BASE", f"http://127.0.0.1:{DEFAULT_PORT}")
|
| 18 |
+
|
| 19 |
+
# -------------------- App FastAPI --------------------
|
| 20 |
+
app = FastAPI(title="SeedVR2-3B API + UI")
|
| 21 |
+
|
| 22 |
+
# Estado simples em memória
|
| 23 |
+
jobs = {} # {job_id: {"status": str, "log": Path, "out": Path, "cmd": list}}
|
| 24 |
+
|
| 25 |
+
# -------------------- Página HTML simples (raiz) --------------------
|
| 26 |
+
INDEX_HTML = """
|
| 27 |
+
<!doctype html>
|
| 28 |
+
<html>
|
| 29 |
+
<head><meta charset="utf-8"><title>SeedVR UI</title></head>
|
| 30 |
+
<body>
|
| 31 |
+
<h2>SeedVR2-3B</h2>
|
| 32 |
+
<p>Use a UI em <a href="/ui">/ui</a> ou a documentação em <a href="/docs">/docs</a>.</p>
|
| 33 |
+
</body>
|
| 34 |
+
</html>
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
@app.get("/", response_class=HTMLResponse)
|
| 38 |
+
async def index():
|
| 39 |
+
return INDEX_HTML
|
| 40 |
+
|
| 41 |
+
# -------------------- Utilitários --------------------
|
| 42 |
+
def visible_gpu_count() -> int:
|
| 43 |
+
try:
|
| 44 |
+
import torch
|
| 45 |
+
if torch.cuda.is_available():
|
| 46 |
+
return torch.cuda.device_count()
|
| 47 |
+
except Exception:
|
| 48 |
+
pass
|
| 49 |
+
# fallback por env
|
| 50 |
+
cuda = os.environ.get("CUDA_VISIBLE_DEVICES", "")
|
| 51 |
+
if not cuda:
|
| 52 |
+
return 0
|
| 53 |
+
return len([x for x in cuda.split(",") if x.strip() != ""])
|
| 54 |
+
|
| 55 |
+
def effective_nproc(nproc: str) -> str:
|
| 56 |
+
ng = max(visible_gpu_count(), 1)
|
| 57 |
+
if nproc == "gpu":
|
| 58 |
+
return str(ng)
|
| 59 |
+
try:
|
| 60 |
+
n = int(nproc)
|
| 61 |
+
return str(max(1, min(n, ng)))
|
| 62 |
+
except Exception:
|
| 63 |
+
return "1"
|
| 64 |
+
|
| 65 |
+
def build_torchrun_cmd(nproc: str, input_dir: Path, output_dir: Path,
|
| 66 |
+
seed: int, res_h: int, res_w: int, sp_size: int):
|
| 67 |
+
nproc_arg = effective_nproc(nproc)
|
| 68 |
+
cmd = [
|
| 69 |
+
"torchrun",
|
| 70 |
+
"--standalone",
|
| 71 |
+
"--rdzv-backend=c10d",
|
| 72 |
+
"--rdzv-endpoint=localhost:0",
|
| 73 |
+
"--nnodes=1",
|
| 74 |
+
f"--nproc-per-node={nproc_arg}",
|
| 75 |
+
SEEDVR_SCRIPT,
|
| 76 |
+
"--video_path", str(input_dir),
|
| 77 |
+
"--output_dir", str(output_dir),
|
| 78 |
+
"--seed", str(seed),
|
| 79 |
+
"--res_h", str(res_h),
|
| 80 |
+
"--res_w", str(res_w),
|
| 81 |
+
"--sp_size", str(sp_size),
|
| 82 |
+
]
|
| 83 |
+
return cmd
|
| 84 |
+
|
| 85 |
+
def run_seedvr(job_id: str, input_dir: Path, output_dir: Path,
|
| 86 |
+
seed: int, res_h: int, res_w: int, sp_size: int, nproc: str):
|
| 87 |
+
log_path = output_dir / "run.log"
|
| 88 |
+
cmd = build_torchrun_cmd(nproc, input_dir, output_dir, seed, res_h, res_w, sp_size)
|
| 89 |
+
jobs[job_id]["cmd"] = cmd
|
| 90 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
| 91 |
+
with open(log_path, "a", buffering=1) as lf:
|
| 92 |
+
lf.write("CMD: " + " ".join(cmd) + "\n")
|
| 93 |
+
proc = subprocess.Popen(
|
| 94 |
+
cmd,
|
| 95 |
+
stdout=lf,
|
| 96 |
+
stderr=subprocess.STDOUT,
|
| 97 |
+
cwd=str(Path.cwd()),
|
| 98 |
+
env=os.environ.copy(),
|
| 99 |
+
)
|
| 100 |
+
jobs[job_id]["status"] = "running"
|
| 101 |
+
rc = proc.wait()
|
| 102 |
+
jobs[job_id]["status"] = "done" if rc == 0 else f"error:{rc}"
|
| 103 |
+
|
| 104 |
+
# -------------------- Endpoints de job --------------------
|
| 105 |
+
@app.post("/submit")
|
| 106 |
+
async def submit(background_tasks: BackgroundTasks,
|
| 107 |
+
file: UploadFile = File(...),
|
| 108 |
+
seed: int = Form(42),
|
| 109 |
+
res_h: int = Form(576),
|
| 110 |
+
res_w: int = Form(1024),
|
| 111 |
+
sp_size: int = Form(1),
|
| 112 |
+
nproc: str = Form("1")):
|
| 113 |
+
if not file.filename:
|
| 114 |
+
raise HTTPException(status_code=400, detail="Arquivo ausente")
|
| 115 |
+
job_id = uuid.uuid4().hex
|
| 116 |
+
job_root = JOBS_DIR / job_id
|
| 117 |
+
in_dir = job_root / "inputs"
|
| 118 |
+
out_dir = job_root / "outputs"
|
| 119 |
+
in_dir.mkdir(parents=True, exist_ok=True)
|
| 120 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
| 121 |
+
dst = in_dir / file.filename
|
| 122 |
+
with open(dst, "wb") as f:
|
| 123 |
+
shutil.copyfileobj(file.file, f)
|
| 124 |
+
jobs[job_id] = {"status": "queued", "log": out_dir / "run.log", "out": out_dir, "cmd": []}
|
| 125 |
+
background_tasks.add_task(run_seedvr, job_id, in_dir, out_dir, seed, res_h, res_w, sp_size, nproc)
|
| 126 |
+
return {"job_id": job_id, "status": "queued", "inputs": str(in_dir), "outputs": str(out_dir)}
|
| 127 |
+
|
| 128 |
+
@app.get("/jobs/{job_id}/status")
|
| 129 |
+
async def job_status(job_id: str):
|
| 130 |
+
if job_id not in jobs:
|
| 131 |
+
raise HTTPException(status_code=404, detail="Job não encontrado")
|
| 132 |
+
j = jobs[job_id]
|
| 133 |
+
resp = {"job_id": job_id, "status": j["status"], "cmd": j.get("cmd", [])}
|
| 134 |
+
log_path = j["log"]
|
| 135 |
+
if log_path.exists():
|
| 136 |
+
try:
|
| 137 |
+
with open(log_path, "r") as f:
|
| 138 |
+
lines = f.readlines()[-50:]
|
| 139 |
+
resp["log_tail"] = "".join(lines)
|
| 140 |
+
except Exception:
|
| 141 |
+
resp["log_tail"] = ""
|
| 142 |
+
return JSONResponse(resp)
|
| 143 |
+
|
| 144 |
+
@app.get("/jobs/{job_id}/result")
|
| 145 |
+
async def job_result(job_id: str):
|
| 146 |
+
if job_id not in jobs:
|
| 147 |
+
raise HTTPException(status_code=404, detail="Job não encontrado")
|
| 148 |
+
out_dir = jobs[job_id]["out"]
|
| 149 |
+
if not out_dir.exists():
|
| 150 |
+
raise HTTPException(status_code=404, detail="Output ausente")
|
| 151 |
+
files = [str(p.name) for p in sorted(out_dir.iterdir()) if p.is_file()]
|
| 152 |
+
return {"job_id": job_id, "files": files}
|
| 153 |
+
|
| 154 |
+
@app.get("/jobs/{job_id}/download/{filename}")
|
| 155 |
+
async def download_file(job_id: str, filename: str):
|
| 156 |
+
if job_id not in jobs:
|
| 157 |
+
raise HTTPException(status_code=404, detail="Job não encontrado")
|
| 158 |
+
file_path = jobs[job_id]["out"] / filename
|
| 159 |
+
if not file_path.exists():
|
| 160 |
+
raise HTTPException(status_code=404, detail="Arquivo não encontrado")
|
| 161 |
+
return FileResponse(str(file_path), filename=filename)
|
| 162 |
+
|
| 163 |
+
# -------------------- UI Gradio (montada em /ui) --------------------
|
| 164 |
+
import gradio as gr
|
| 165 |
+
import requests
|
| 166 |
+
|
| 167 |
+
def submit_and_follow(file, seed, res_h, res_w, sp_size, nproc, progress=gr.Progress()):
|
| 168 |
+
# 1) Submete
|
| 169 |
+
files = {"file": (os.path.basename(file.name), open(file.name, "rb"), "application/octet-stream")}
|
| 170 |
+
data = {"seed": int(seed), "res_h": int(res_h), "res_w": int(res_w), "sp_size": int(sp_size), "nproc": str(nproc)}
|
| 171 |
+
r = requests.post(f"{API_BASE}/submit", files=files, data=data, timeout=600)
|
| 172 |
+
r.raise_for_status()
|
| 173 |
+
job_id = r.json()["job_id"]
|
| 174 |
+
progress(0, desc=f"Job {job_id} criado")
|
| 175 |
+
log_text = f"Job {job_id} criado; acompanhando...\n"
|
| 176 |
+
|
| 177 |
+
# 2) Polling
|
| 178 |
+
pct = 0.05
|
| 179 |
+
while True:
|
| 180 |
+
s = requests.get(f"{API_BASE}/jobs/{job_id}/status", timeout=120).json()
|
| 181 |
+
if "log_tail" in s and s["log_tail"]:
|
| 182 |
+
log_text = f"Status: {s['status']}\n\n{s['log_tail']}"
|
| 183 |
+
else:
|
| 184 |
+
log_text = f"Status: {s['status']}"
|
| 185 |
+
progress(min(pct, 0.95), desc=s["status"])
|
| 186 |
+
yield log_text, job_id, []
|
| 187 |
+
if s["status"].startswith("error"):
|
| 188 |
+
return f"Erro: {s['status']}", job_id, []
|
| 189 |
+
if s["status"] == "done":
|
| 190 |
+
files_resp = requests.get(f"{API_BASE}/jobs/{job_id}/result", timeout=120).json()
|
| 191 |
+
return "Concluído", job_id, files_resp.get("files", [])
|
| 192 |
+
time.sleep(2)
|
| 193 |
+
pct = min(pct + 0.05, 0.95)
|
| 194 |
+
|
| 195 |
+
with gr.Blocks(title="SeedVR2-3B UI") as ui:
|
| 196 |
+
gr.Markdown("### SeedVR2-3B — Processamento de vídeo/imagem")
|
| 197 |
+
with gr.Row():
|
| 198 |
+
in_file = gr.File(label="Vídeo/Imagem", file_types=["image", "video"])
|
| 199 |
+
with gr.Column():
|
| 200 |
+
seed = gr.Number(value=42, label="Seed", precision=0)
|
| 201 |
+
res_h = gr.Number(value=576, label="Altura", precision=0)
|
| 202 |
+
res_w = gr.Number(value=1024, label="Largura", precision=0)
|
| 203 |
+
sp_size = gr.Number(value=1, label="sp_size", precision=0)
|
| 204 |
+
nproc = gr.Dropdown(choices=["1","2","4","gpu"], value="1", label="nproc-per-node")
|
| 205 |
+
go = gr.Button("Iniciar")
|
| 206 |
+
out_log = gr.Markdown(label="Log/Status")
|
| 207 |
+
out_job = gr.Textbox(label="job_id")
|
| 208 |
+
out_files = gr.JSON(label="Arquivos gerados")
|
| 209 |
+
go.click(submit_and_follow, [in_file, seed, res_h, res_w, sp_size, nproc], [out_log, out_job, out_files], queue=True)
|
| 210 |
+
|
| 211 |
+
# Monta o Gradio em /ui
|
| 212 |
+
app = gr.mount_gradio_app(app, ui, path="/ui")
|
builder.sh
ADDED
|
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env bash
|
| 2 |
+
set -euo pipefail
|
| 3 |
+
|
| 4 |
+
echo "🚀 Builder (FlashAttn LayerNorm extra + Apex + Q8) — runtime com GPU visível"
|
| 5 |
+
|
| 6 |
+
# ===== Config e diretórios =====
|
| 7 |
+
export SELF_HF_REPO_ID="${SELF_HF_REPO_ID:-euIaxs22/Aduc-sdr}" # Repo no HF para wheels
|
| 8 |
+
export HF_HOME="${HF_HOME:-/app/model_cache}"
|
| 9 |
+
export HF_HUB_CACHE="${HF_HUB_CACHE:-$HF_HOME/hub}"
|
| 10 |
+
export TORCH_HOME="${TORCH_HOME:-$HF_HOME/torch}"
|
| 11 |
+
export HF_HUB_ENABLE_HF_TRANSFER="${HF_HUB_ENABLE_HF_TRANSFER:-1}"
|
| 12 |
+
export PATH="$HOME/.local/bin:$PATH"
|
| 13 |
+
|
| 14 |
+
mkdir -p /app/wheels /app/cuda_cache "$HF_HOME" "$TORCH_HOME" /app/wheels/src
|
| 15 |
+
chmod -R 777 /app/wheels || true
|
| 16 |
+
export CUDA_CACHE_PATH="/app/cuda_cache"
|
| 17 |
+
|
| 18 |
+
# Preserva licença NGC (se existir)
|
| 19 |
+
if [ -f "/NGC-DL-CONTAINER-LICENSE" ]; then
|
| 20 |
+
cp -f /NGC-DL-CONTAINER-LICENSE /app/wheels/NGC-DL-CONTAINER-LICENSE || true
|
| 21 |
+
fi
|
| 22 |
+
|
| 23 |
+
# ===== Dependências mínimas =====
|
| 24 |
+
python -m pip install -v -U pip build setuptools wheel hatchling hatch-vcs scikit-build-core cmake ninja packaging "huggingface_hub[hf_transfer]" || true
|
| 25 |
+
|
| 26 |
+
# ===== Tags de ambiente (Python/CUDA/Torch) =====
|
| 27 |
+
PY_TAG="$(python -c 'import sys; print(f"cp{sys.version_info[0]}{sys.version_info[1]}")' 2>/dev/null || echo cp310)"
|
| 28 |
+
TORCH_VER="$(python - <<'PY'
|
| 29 |
+
try:
|
| 30 |
+
import torch, re
|
| 31 |
+
v = torch.__version__
|
| 32 |
+
print(re.sub(r'\+.*$', '', v))
|
| 33 |
+
except Exception:
|
| 34 |
+
print("unknown")
|
| 35 |
+
PY
|
| 36 |
+
)"
|
| 37 |
+
CU_TAG="$(python - <<'PY'
|
| 38 |
+
try:
|
| 39 |
+
import torch
|
| 40 |
+
cu = getattr(torch.version, "cuda", None)
|
| 41 |
+
print("cu"+cu.replace(".","")) if cu else print("")
|
| 42 |
+
except Exception:
|
| 43 |
+
print("")
|
| 44 |
+
PY
|
| 45 |
+
)"
|
| 46 |
+
echo "[env] PY_TAG=${PY_TAG} TORCH_VER=${TORCH_VER} CU_TAG=${CU_TAG}"
|
| 47 |
+
|
| 48 |
+
# ============================================================================
|
| 49 |
+
# CHECKERS
|
| 50 |
+
# ============================================================================
|
| 51 |
+
|
| 52 |
+
# Checa especificamente o módulo nativo requerido pelo layer_norm (sem checar 'flash-attn' geral)
|
| 53 |
+
check_flash_layer_norm_bin () {
|
| 54 |
+
python - <<'PY'
|
| 55 |
+
import importlib
|
| 56 |
+
ok = False
|
| 57 |
+
# extensões conhecidas produzidas por csrc/layer_norm
|
| 58 |
+
for name in [
|
| 59 |
+
"dropout_layer_norm", # nome do módulo nativo
|
| 60 |
+
"flash_attn.ops.layer_norm", # wrapper python que usa o nativo
|
| 61 |
+
"flash_attn.ops.rms_norm", # pode depender do mesmo backend em alguns empacotamentos
|
| 62 |
+
]:
|
| 63 |
+
try:
|
| 64 |
+
importlib.import_module(name)
|
| 65 |
+
ok = True
|
| 66 |
+
break
|
| 67 |
+
except Exception:
|
| 68 |
+
pass
|
| 69 |
+
raise SystemExit(0 if ok else 1)
|
| 70 |
+
PY
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
check_apex () {
|
| 74 |
+
python - <<'PY'
|
| 75 |
+
try:
|
| 76 |
+
from apex.normalization import FusedLayerNorm
|
| 77 |
+
import importlib; importlib.import_module("fused_layer_norm_cuda")
|
| 78 |
+
ok = True
|
| 79 |
+
except Exception:
|
| 80 |
+
ok = False
|
| 81 |
+
raise SystemExit(0 if ok else 1)
|
| 82 |
+
PY
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
check_q8 () {
|
| 86 |
+
python - <<'PY'
|
| 87 |
+
import importlib.util
|
| 88 |
+
spec = importlib.util.find_spec("ltx_q8_kernels") or importlib.util.find_spec("q8_kernels")
|
| 89 |
+
raise SystemExit(0 if spec else 1)
|
| 90 |
+
PY
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
# ============================================================================
|
| 94 |
+
# DOWNLOAD DO HUB (GENÉRICO)
|
| 95 |
+
# ============================================================================
|
| 96 |
+
|
| 97 |
+
# Instala uma wheel do HF por prefixo simples (ex.: apex-, q8_kernels-)
|
| 98 |
+
install_from_hf_by_prefix () {
|
| 99 |
+
local PREFIX="$1"
|
| 100 |
+
echo "[hub] Procurando wheels '${PREFIX}-*.whl' em ${SELF_HF_REPO_ID} com tags ${PY_TAG}/${CU_TAG}"
|
| 101 |
+
python - "$PREFIX" "$PY_TAG" "$CU_TAG" <<'PY' || exit 0
|
| 102 |
+
import os, sys
|
| 103 |
+
from huggingface_hub import HfApi, hf_hub_download, HfFolder
|
| 104 |
+
|
| 105 |
+
prefix, py_tag, cu_tag = sys.argv[1], sys.argv[2], sys.argv[3]
|
| 106 |
+
repo = os.environ.get("SELF_HF_REPO_ID","euIaxs22/Aduc-sdr")
|
| 107 |
+
api = HfApi(token=os.getenv("HF_TOKEN") or HfFolder.get_token())
|
| 108 |
+
try:
|
| 109 |
+
files = api.list_repo_files(repo_id=repo, repo_type="model")
|
| 110 |
+
except Exception:
|
| 111 |
+
raise SystemExit(0)
|
| 112 |
+
|
| 113 |
+
def match(name: str) -> bool:
|
| 114 |
+
return name.endswith(".whl") and name.rsplit("/",1)[-1].startswith(prefix + "-") and (py_tag in name)
|
| 115 |
+
|
| 116 |
+
cands = [f for f in files if match(f)]
|
| 117 |
+
pref = [f for f in cands if cu_tag and cu_tag in f] or cands
|
| 118 |
+
if not pref:
|
| 119 |
+
raise SystemExit(0)
|
| 120 |
+
|
| 121 |
+
target = sorted(pref, reverse=True)[0]
|
| 122 |
+
print(target)
|
| 123 |
+
path = hf_hub_download(repo_id=repo, filename=target, repo_type="model", local_dir="/app/wheels")
|
| 124 |
+
print(path)
|
| 125 |
+
PY
|
| 126 |
+
}
|
| 127 |
+
|
| 128 |
+
# Instala wheels do submódulo layer_norm aceitando variantes de nome
|
| 129 |
+
install_flash_layer_norm_from_hf () {
|
| 130 |
+
echo "[hub] Procurando wheels FlashAttention LayerNorm em ${SELF_HF_REPO_ID}"
|
| 131 |
+
python - "$PY_TAG" "$CU_TAG" <<'PY' || exit 0
|
| 132 |
+
import os, sys, re
|
| 133 |
+
from huggingface_hub import HfApi, hf_hub_download, HfFolder
|
| 134 |
+
|
| 135 |
+
py_tag, cu_tag = sys.argv[1], sys.argv[2]
|
| 136 |
+
repo = os.environ.get("SELF_HF_REPO_ID","euIaxs22/Aduc-sdr")
|
| 137 |
+
api = HfApi(token=os.getenv("HF_TOKEN") or HfFolder.get_token())
|
| 138 |
+
try:
|
| 139 |
+
files = api.list_repo_files(repo_id=repo, repo_type="model")
|
| 140 |
+
except Exception:
|
| 141 |
+
raise SystemExit(0)
|
| 142 |
+
|
| 143 |
+
pats = [
|
| 144 |
+
r"^flash[_-]?attn[_-]?.*layer[_-]?norm-.*\.whl$",
|
| 145 |
+
r"^dropout[_-]?layer[_-]?norm-.*\.whl$",
|
| 146 |
+
]
|
| 147 |
+
def ok(fn: str) -> bool:
|
| 148 |
+
name = fn.rsplit("/",1)[-1]
|
| 149 |
+
if py_tag not in name: return False
|
| 150 |
+
return any(re.search(p, name, flags=re.I) for p in pats)
|
| 151 |
+
|
| 152 |
+
cands = [f for f in files if ok(f)]
|
| 153 |
+
pref = [f for f in cands if cu_tag and cu_tag in f] or cands
|
| 154 |
+
if not pref:
|
| 155 |
+
raise SystemExit(0)
|
| 156 |
+
|
| 157 |
+
target = sorted(pref, reverse=True)[0]
|
| 158 |
+
print(target)
|
| 159 |
+
path = hf_hub_download(repo_id=repo, filename=target, repo_type="model", local_dir="/app/wheels")
|
| 160 |
+
print(path)
|
| 161 |
+
PY
|
| 162 |
+
}
|
| 163 |
+
|
| 164 |
+
# ============================================================================
|
| 165 |
+
# BUILDERS
|
| 166 |
+
# ============================================================================
|
| 167 |
+
|
| 168 |
+
# Passo extra: SIEMPRE tenta instalar o submódulo layer_norm via wheel do HF;
|
| 169 |
+
# se não houver wheel compatível, compila a partir de csrc/layer_norm e gera wheel.
|
| 170 |
+
build_or_install_flash_layer_norm () {
|
| 171 |
+
echo "[flow] === FlashAttn LayerNorm (passo extra) ==="
|
| 172 |
+
|
| 173 |
+
# 1) Tentar instalar wheel do HF primeiro (evita recompilar)
|
| 174 |
+
HF_OUT="$(install_flash_layer_norm_from_hf || true)"
|
| 175 |
+
if [ -n "${HF_OUT:-}" ]; then
|
| 176 |
+
WHEEL_PATH="$(printf "%s\n" "${HF_OUT}" | tail -n1)"
|
| 177 |
+
echo "[hub] Baixado: ${WHEEL_PATH}"
|
| 178 |
+
python -m pip install -v -U --no-build-isolation --no-deps "${WHEEL_PATH}" || true
|
| 179 |
+
if check_flash_layer_norm_bin; then
|
| 180 |
+
echo "[flow] FlashAttn LayerNorm: OK via wheel do Hub"
|
| 181 |
+
return 0
|
| 182 |
+
fi
|
| 183 |
+
echo "[flow] Wheel do Hub não resolveu import; seguirá com build"
|
| 184 |
+
else
|
| 185 |
+
echo "[hub] Nenhuma wheel compatível encontrada para FlashAttn LayerNorm"
|
| 186 |
+
fi
|
| 187 |
+
|
| 188 |
+
# 2) Build from source do submódulo csrc/layer_norm -> wheel
|
| 189 |
+
local SRC="/app/wheels/src/flash-attn"
|
| 190 |
+
echo "[build] Preparando fonte FlashAttention (layer_norm) em ${SRC}"
|
| 191 |
+
if [ -d "$SRC/.git" ]; then
|
| 192 |
+
git -C "$SRC" fetch --all -p || true
|
| 193 |
+
git -C "$SRC" reset --hard origin/main || true
|
| 194 |
+
git -C "$SRC" clean -fdx || true
|
| 195 |
+
else
|
| 196 |
+
rm -rf "$SRC"
|
| 197 |
+
git clone --depth 1 https://github.com/Dao-AILab/flash-attention "$SRC"
|
| 198 |
+
fi
|
| 199 |
+
|
| 200 |
+
# Define CC alvo a partir da GPU ativa (reduz tempo/ruído de build)
|
| 201 |
+
export TORCH_CUDA_ARCH_LIST="$(python - <<'PY'
|
| 202 |
+
import torch
|
| 203 |
+
try:
|
| 204 |
+
cc = "%d.%d" % torch.cuda.get_device_capability(0)
|
| 205 |
+
print(cc)
|
| 206 |
+
except Exception:
|
| 207 |
+
print("8.9") # fallback p/ Ada (L40S) caso build sem GPU visível
|
| 208 |
+
PY
|
| 209 |
+
)"
|
| 210 |
+
echo "[build] TORCH_CUDA_ARCH_LIST=${TORCH_CUDA_ARCH_LIST}"
|
| 211 |
+
|
| 212 |
+
pushd "$SRC/csrc/layer_norm" >/dev/null
|
| 213 |
+
export MAX_JOBS="${MAX_JOBS:-90}"
|
| 214 |
+
# Gera wheel reutilizável
|
| 215 |
+
python -m pip wheel -v --no-build-isolation --no-deps . -w /app/wheels || true
|
| 216 |
+
popd >/dev/null
|
| 217 |
+
|
| 218 |
+
# Instala a wheel gerada
|
| 219 |
+
local W="$(ls -t /app/wheels/*flash*attn*layer*norm*-*.whl 2>/dev/null | head -n1 || true)"
|
| 220 |
+
if [ -z "${W}" ]; then
|
| 221 |
+
W="$(ls -t /app/wheels/*dropout*layer*norm*-*.whl 2>/dev/null | head -n1 || true)"
|
| 222 |
+
fi
|
| 223 |
+
if [ -z "${W}" ]; then
|
| 224 |
+
# fallback para qualquer .whl recém gerado
|
| 225 |
+
W="$(ls -t /app/wheels/*.whl 2>/dev/null | head -n1 || true)"
|
| 226 |
+
fi
|
| 227 |
+
|
| 228 |
+
if [ -n "${W}" ]; then
|
| 229 |
+
python -m pip install -v -U --no-deps "${W}" || true
|
| 230 |
+
echo "[build] FlashAttn LayerNorm instalado da wheel: ${W}"
|
| 231 |
+
else
|
| 232 |
+
echo "[build] Nenhuma wheel gerada; instalando direto do source (último recurso)"
|
| 233 |
+
python -m pip install -v --no-build-isolation "$SRC/csrc/layer_norm" || true
|
| 234 |
+
fi
|
| 235 |
+
|
| 236 |
+
# Checagem final do binário
|
| 237 |
+
if check_flash_layer_norm_bin; then
|
| 238 |
+
echo "[flow] FlashAttn LayerNorm: import OK após build"
|
| 239 |
+
return 0
|
| 240 |
+
fi
|
| 241 |
+
echo "[flow] FlashAttn LayerNorm: falhou import após build"
|
| 242 |
+
return 1
|
| 243 |
+
}
|
| 244 |
+
|
| 245 |
+
build_apex () {
|
| 246 |
+
local SRC="/app/wheels/src/apex"
|
| 247 |
+
echo "[build] Preparando fonte Apex em ${SRC}"
|
| 248 |
+
if [ -d "$SRC/.git" ]; then
|
| 249 |
+
git -C "$SRC" fetch --all -p || true
|
| 250 |
+
git -C "$SRC" reset --hard HEAD || true
|
| 251 |
+
git -C "$SRC" clean -fdx || true
|
| 252 |
+
else
|
| 253 |
+
rm -rf "$SRC"
|
| 254 |
+
git clone --depth 1 https://github.com/NVIDIA/apex "$SRC"
|
| 255 |
+
fi
|
| 256 |
+
echo "[build] Compilando Apex -> wheel"
|
| 257 |
+
export APEX_CPP_EXT=1 APEX_CUDA_EXT=1 APEX_ALL_CONTRIB_EXT=0
|
| 258 |
+
python -m pip wheel -v --no-build-isolation --no-deps "$SRC" -w /app/wheels || true
|
| 259 |
+
local W="$(ls -t /app/wheels/apex-*.whl 2>/dev/null | head -n1 || true)"
|
| 260 |
+
if [ -n "${W}" ]; then
|
| 261 |
+
python -m pip install -v -U --no-deps "${W}" || true
|
| 262 |
+
echo "[build] Apex instalado da wheel recém-compilada: ${W}"
|
| 263 |
+
else
|
| 264 |
+
echo "[build] Nenhuma wheel Apex gerada; instalando do source"
|
| 265 |
+
python -m pip install -v --no-build-isolation "$SRC" || true
|
| 266 |
+
fi
|
| 267 |
+
}
|
| 268 |
+
|
| 269 |
+
Q8_REPO="${Q8_REPO:-https://github.com/Lightricks/LTX-Video-Q8-Kernels.git}"
|
| 270 |
+
Q8_COMMIT="${Q8_COMMIT:-f3066edea210082799ca5a2bbf9ef0321c5dd8fc}"
|
| 271 |
+
build_q8 () {
|
| 272 |
+
local SRC="/app/wheels/src/q8_kernels"
|
| 273 |
+
rm -rf "$SRC"
|
| 274 |
+
git clone --filter=blob:none "$Q8_REPO" "$SRC"
|
| 275 |
+
git -C "$SRC" checkout "$Q8_COMMIT"
|
| 276 |
+
git -C "$SRC" submodule update --init --recursive
|
| 277 |
+
echo "[build] Compilando Q8 Kernels -> wheel"
|
| 278 |
+
python -m pip wheel -v --no-build-isolation "$SRC" -w /app/wheels || true
|
| 279 |
+
local W="$(ls -t /app/wheels/q8_kernels-*.whl 2>/dev/null | head -n1 || true)"
|
| 280 |
+
if [ -n "${W}" ]; then
|
| 281 |
+
python -m pip install -v -U --no-deps "${W}" || true
|
| 282 |
+
echo "[build] Q8 instalado da wheel recém-compilada: ${W}"
|
| 283 |
+
else
|
| 284 |
+
echo "[build] Nenhuma wheel q8_kernels gerada; instalando do source"
|
| 285 |
+
python -m pip install -v --no-build-isolation "$SRC" || true
|
| 286 |
+
fi
|
| 287 |
+
}
|
| 288 |
+
|
| 289 |
+
# ============================================================================
|
| 290 |
+
# EXECUÇÃO
|
| 291 |
+
# ============================================================================
|
| 292 |
+
|
| 293 |
+
# Passo adicional SEM depender de "flash-attn" já instalado: trata somente o layer_norm
|
| 294 |
+
build_or_install_flash_layer_norm || true
|
| 295 |
+
|
| 296 |
+
# Apex (mantido)
|
| 297 |
+
# Tenta primeiro via wheel no HF e, se não houver, compila e instala em wheel
|
| 298 |
+
echo "[flow] === apex ==="
|
| 299 |
+
HF_OUT="$(install_from_hf_by_prefix "apex" || true)"
|
| 300 |
+
if [ -n "${HF_OUT:-}" ]; then
|
| 301 |
+
WHEEL_PATH="$(printf "%s\n" "${HF_OUT}" | tail -n1)"
|
| 302 |
+
echo "[hub] Baixado: ${WHEEL_PATH}"
|
| 303 |
+
python -m pip install -v -U --no-build-isolation "${WHEEL_PATH}" || true
|
| 304 |
+
if ! check_apex; then
|
| 305 |
+
echo "[flow] apex: import falhou após wheel; compilando"
|
| 306 |
+
build_apex || true
|
| 307 |
+
fi
|
| 308 |
+
else
|
| 309 |
+
echo "[hub] Nenhuma wheel apex compatível; compilando"
|
| 310 |
+
build_apex || true
|
| 311 |
+
fi
|
| 312 |
+
|
| 313 |
+
# Q8 (opcional)
|
| 314 |
+
# echo "[flow] === q8_kernels ==="
|
| 315 |
+
# HF_OUT="$(install_from_hf_by_prefix "q8_kernels" || true)"
|
| 316 |
+
# if [ -n "${HF_OUT:-}" ]; then
|
| 317 |
+
# WHEEL_PATH="$(printf "%s\n" "${HF_OUT}" | tail -n1)"
|
| 318 |
+
# echo "[hub] Baixado: ${WHEEL_PATH}"
|
| 319 |
+
# python -m pip install -v -U --no-build-isolation "${WHEEL_PATH}" || true
|
| 320 |
+
# if ! check_q8; then
|
| 321 |
+
# echo "[flow] q8_kernels: import falhou após wheel; compilando"
|
| 322 |
+
# build_q8 || true
|
| 323 |
+
# fi
|
| 324 |
+
# else
|
| 325 |
+
# echo "[hub] Nenhuma wheel q8_kernels compatível; compilando"
|
| 326 |
+
# build_q8 || true
|
| 327 |
+
# fi
|
| 328 |
+
|
| 329 |
+
# Upload de wheels produzidas para o HF (cache cross-restarts)
|
| 330 |
+
python - <<'PY'
|
| 331 |
+
import os
|
| 332 |
+
from huggingface_hub import HfApi, HfFolder
|
| 333 |
+
|
| 334 |
+
repo = os.environ.get("SELF_HF_REPO_ID","euIaxs22/Aduc-sdr")
|
| 335 |
+
token = os.getenv("HF_TOKEN") or HfFolder.get_token()
|
| 336 |
+
if not token:
|
| 337 |
+
raise SystemExit("HF_TOKEN ausente; upload desabilitado")
|
| 338 |
+
|
| 339 |
+
api = HfApi(token=token)
|
| 340 |
+
api.upload_folder(
|
| 341 |
+
folder_path="/app/wheels",
|
| 342 |
+
repo_id=repo,
|
| 343 |
+
repo_type="model",
|
| 344 |
+
allow_patterns=["*.whl","NGC-DL-CONTAINER-LICENSE"],
|
| 345 |
+
ignore_patterns=["**/src/**","**/*.log","**/logs/**",".git/**"],
|
| 346 |
+
)
|
| 347 |
+
print("Upload concluído (wheels + licença).")
|
| 348 |
+
PY
|
| 349 |
+
|
| 350 |
+
chmod -R 777 /app/wheels || true
|
| 351 |
+
echo "✅ Builder finalizado."
|
info.sh
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env bash
|
| 2 |
+
|
| 3 |
+
set -euo pipefail
|
| 4 |
+
|
| 5 |
+
echo "================= RUNTIME CAPABILITIES ================="
|
| 6 |
+
date
|
| 7 |
+
|
| 8 |
+
echo
|
| 9 |
+
if command -v nvidia-smi >/dev/null 2>&1; then
|
| 10 |
+
nvidia-smi
|
| 11 |
+
else
|
| 12 |
+
echo "nvidia-smi: not available"
|
| 13 |
+
fi
|
| 14 |
+
echo
|
| 15 |
+
|
| 16 |
+
echo "CUDA_HOME: ${CUDA_HOME:-/usr/local/cuda}"
|
| 17 |
+
if command -v nvcc >/dev/null 2>&1; then
|
| 18 |
+
nvcc --version || true
|
| 19 |
+
else
|
| 20 |
+
echo "nvcc: not available"
|
| 21 |
+
fi
|
| 22 |
+
echo
|
| 23 |
+
|
| 24 |
+
echo "[PyTorch / CUDA backend]"
|
| 25 |
+
python3 - <<'PY'
|
| 26 |
+
import json, os, torch, inspect
|
| 27 |
+
|
| 28 |
+
def to_bool(x):
|
| 29 |
+
try:
|
| 30 |
+
if callable(x):
|
| 31 |
+
try:
|
| 32 |
+
sig = inspect.signature(x)
|
| 33 |
+
if len(sig.parameters)==0:
|
| 34 |
+
return bool(x())
|
| 35 |
+
except Exception:
|
| 36 |
+
pass
|
| 37 |
+
return True
|
| 38 |
+
return bool(x)
|
| 39 |
+
except Exception:
|
| 40 |
+
return None
|
| 41 |
+
|
| 42 |
+
info = {
|
| 43 |
+
"torch": getattr(torch, "__version__", None),
|
| 44 |
+
"cuda_available": torch.cuda.is_available(),
|
| 45 |
+
"cuda_device_count": torch.cuda.device_count(),
|
| 46 |
+
"cuda_runtime_version": getattr(torch.version, "cuda", None),
|
| 47 |
+
"cudnn_version": torch.backends.cudnn.version() if torch.backends.cudnn.is_available() else None,
|
| 48 |
+
"tf32": (torch.backends.cuda.matmul.allow_tf32 if torch.cuda.is_available() else None),
|
| 49 |
+
"flash_sdp": (to_bool(getattr(torch.backends.cuda, "enable_flash_sdp", None)) if torch.cuda.is_available() else None),
|
| 50 |
+
"mem_efficient_sdp": (to_bool(getattr(torch.backends.cuda, "enable_mem_efficient_sdp", None)) if torch.cuda.is_available() else None),
|
| 51 |
+
"math_sdp": (to_bool(getattr(torch.backends.cuda, "enable_math_sdp", None)) if torch.cuda.is_available() else None),
|
| 52 |
+
}
|
| 53 |
+
print(json.dumps(info, indent=2))
|
| 54 |
+
for i in range(min(torch.cuda.device_count(), 16)):
|
| 55 |
+
print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
|
| 56 |
+
PY
|
| 57 |
+
echo
|
| 58 |
+
|
| 59 |
+
echo "[Apex (FusedLayerNorm/RMSNorm)]"
|
| 60 |
+
python3 - <<'PY'
|
| 61 |
+
try:
|
| 62 |
+
from apex.normalization import FusedLayerNorm, FusedRMSNorm
|
| 63 |
+
import importlib; importlib.import_module("fused_layer_norm_cuda")
|
| 64 |
+
print("apex.normalization: OK")
|
| 65 |
+
except Exception as e:
|
| 66 |
+
print("apex.normalization: FAIL ->", e)
|
| 67 |
+
PY
|
| 68 |
+
echo
|
| 69 |
+
|
| 70 |
+
echo "[FlashAttention (CUDA/Triton/RMSNorm)]"
|
| 71 |
+
python3 - <<'PY'
|
| 72 |
+
import importlib
|
| 73 |
+
mods = [
|
| 74 |
+
'flash_attn', 'flash_attn_2_cuda',
|
| 75 |
+
'flash_attn.ops.rms_norm', 'flash_attn.ops.layer_norm',
|
| 76 |
+
'flash_attn.layers.layer_norm'
|
| 77 |
+
]
|
| 78 |
+
for m in mods:
|
| 79 |
+
try:
|
| 80 |
+
importlib.import_module(m)
|
| 81 |
+
print(f"{m}: OK")
|
| 82 |
+
except Exception as e:
|
| 83 |
+
print(f"{m}: FAIL -> {e}")
|
| 84 |
+
PY
|
| 85 |
+
echo
|
| 86 |
+
|
| 87 |
+
echo "[FlashAttention versão/details]"
|
| 88 |
+
python3 - <<'PY'
|
| 89 |
+
try:
|
| 90 |
+
import flash_attn
|
| 91 |
+
fa_ver = getattr(flash_attn, "__version__", None)
|
| 92 |
+
print(f"flash_attn: {fa_ver}")
|
| 93 |
+
except Exception:
|
| 94 |
+
print("flash_attn: not importable.")
|
| 95 |
+
try:
|
| 96 |
+
import torch
|
| 97 |
+
print(f"torch: {torch.__version__} | cuda: {getattr(torch.version, 'cuda', None)}")
|
| 98 |
+
except Exception:
|
| 99 |
+
pass
|
| 100 |
+
PY
|
| 101 |
+
echo
|
| 102 |
+
|
| 103 |
+
echo "[Triton]"
|
| 104 |
+
python3 - <<'PY'
|
| 105 |
+
try:
|
| 106 |
+
import triton
|
| 107 |
+
print("triton:", triton.__version__)
|
| 108 |
+
try:
|
| 109 |
+
import triton.ops as _; print("triton.ops: OK")
|
| 110 |
+
except Exception:
|
| 111 |
+
print("triton.ops: not present (ok on Triton>=3.x)")
|
| 112 |
+
except Exception as e:
|
| 113 |
+
print("triton: FAIL ->", e)
|
| 114 |
+
PY
|
| 115 |
+
echo
|
| 116 |
+
|
| 117 |
+
echo "[BitsAndBytes (Q8/Q4)]"
|
| 118 |
+
python3 - <<'PY'
|
| 119 |
+
try:
|
| 120 |
+
import bitsandbytes as bnb
|
| 121 |
+
print("bitsandbytes:", bnb.__version__)
|
| 122 |
+
try:
|
| 123 |
+
from bitsandbytes.triton import _custom_ops as _; print("bnb.triton._custom_ops: OK")
|
| 124 |
+
except Exception as e:
|
| 125 |
+
print("bnb.triton: partial ->", e)
|
| 126 |
+
except Exception as e:
|
| 127 |
+
print("bitsandbytes: FAIL ->", e)
|
| 128 |
+
PY
|
| 129 |
+
echo
|
| 130 |
+
|
| 131 |
+
echo "[Transformers / Diffusers / XFormers / EcoML]"
|
| 132 |
+
python3 - <<'PY'
|
| 133 |
+
def _v(m):
|
| 134 |
+
try:
|
| 135 |
+
mod = __import__(m)
|
| 136 |
+
print(f"{m}: {getattr(mod, '__version__', 'unknown')}")
|
| 137 |
+
except Exception as e:
|
| 138 |
+
print(f"{m}: FAIL -> {e}")
|
| 139 |
+
for m in ("transformers", "diffusers", "xformers", "ecuml", "mlx", "ecobase"):
|
| 140 |
+
_v(m)
|
| 141 |
+
PY
|
| 142 |
+
echo
|
| 143 |
+
|
| 144 |
+
echo "[Distribuído / NCCL Env]"
|
| 145 |
+
env | grep -E '^(CUDA_VISIBLE_DEVICES|NCCL_|TORCH_|ENABLE_.*SDP|HF_HUB_.*|CUDA_|NV_.*NCCL.*|PYTORCH_CUDA_ALLOC_CONF)=' | sort
|
| 146 |
+
echo
|
| 147 |
+
|
| 148 |
+
echo "[Output dir/perms]"
|
| 149 |
+
OUT="/app/outputs"
|
| 150 |
+
echo "OUT dir: $OUT"
|
| 151 |
+
mkdir -p "$OUT"
|
| 152 |
+
ls -la "$OUT" || true
|
| 153 |
+
|
| 154 |
+
echo "================= END CAPABILITIES ================="
|
requirements.txt
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
opencv-python-headless
|
| 3 |
+
pillow>=10.4.0
|
| 4 |
+
numpy==1.24.4
|
| 5 |
+
|
| 6 |
+
safetensors>=0.4.5
|
| 7 |
+
einops>=0.8.0
|
| 8 |
+
pyyaml>=6.0.2
|
| 9 |
+
omegaconf==2.3.0
|
| 10 |
+
mediapy
|
| 11 |
+
librosa
|
| 12 |
+
moviepy
|
| 13 |
+
OmegaConf
|
| 14 |
+
beartype
|
| 15 |
+
sentencepiece
|
| 16 |
+
gradio[oauth]
|
| 17 |
+
mediapy
|
| 18 |
+
fastapi
|
| 19 |
+
uvicorn[standard]
|
| 20 |
+
tiktoken
|
| 21 |
+
transformers_stream_generator
|
| 22 |
+
rotary-embedding-torch
|
| 23 |
+
transformers
|
| 24 |
+
accelerate
|
| 25 |
+
safetensors
|
| 26 |
+
einops
|
| 27 |
+
decord
|
| 28 |
+
huggingface_hub
|
| 29 |
+
google-generativeai
|
| 30 |
+
gradio
|
| 31 |
+
tabulate
|
| 32 |
+
pydantic
|
| 33 |
+
soundfile
|
| 34 |
+
requests
|
| 35 |
+
hf_transfer
|
| 36 |
+
timm
|
| 37 |
+
ftfy
|
| 38 |
+
easydict
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
#vince
|
| 42 |
+
bitsandbytes==0.45.0
|
| 43 |
+
einop
|
| 44 |
+
numpy
|
| 45 |
+
rotary-embedding-torch
|
| 46 |
+
safetensors
|
| 47 |
+
sentencepiece
|
| 48 |
+
torch
|
| 49 |
+
torchvision
|
| 50 |
+
transformers
|
start.sh
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env bash
|
| 2 |
+
set -euo pipefail
|
| 3 |
+
|
| 4 |
+
# =======================
|
| 5 |
+
# SeedVR — start UI
|
| 6 |
+
# =======================
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# 1) Builder (garante Apex/Flash e deps CUDA)
|
| 10 |
+
echo "🛠️ Iniciando o builder.sh para compilar/instalar dependências CUDA..."
|
| 11 |
+
if [ -f "/app/builder.sh" ]; then
|
| 12 |
+
/bin/bash /app/builder.sh
|
| 13 |
+
echo "✅ Builder finalizado."
|
| 14 |
+
else
|
| 15 |
+
echo "⚠️ Aviso: builder.sh não encontrado. Pulando etapa de compilação de dependências."
|
| 16 |
+
fi
|
| 17 |
+
|
| 18 |
+
# Pastas e variáveis (podem ser sobrescritas via env)
|
| 19 |
+
export SEEDVR_ROOT="${SEEDVR_ROOT:-/data/SeedVR}"
|
| 20 |
+
export CKPTS_ROOT="${CKPTS_ROOT:-/data/ckpts/SeedVR2-3B}"
|
| 21 |
+
export OUTPUT_ROOT="${OUTPUT_ROOT:-/app/outputs}"
|
| 22 |
+
export INPUT_ROOT="${INPUT_ROOT:-/app/inputs}"
|
| 23 |
+
|
| 24 |
+
# Transformers v5 recomenda HF_HOME
|
| 25 |
+
export HF_HOME="${HF_HOME:-/data/.cache/huggingface}"
|
| 26 |
+
export HF_TOKEN="${HF_TOKEN:-${HUGGINGFACE_TOKEN:-}}"
|
| 27 |
+
|
| 28 |
+
# Repo/model identifiers
|
| 29 |
+
export SEEDVR_GIT_URL="${SEEDVR_GIT_URL:-https://github.com/ByteDance-Seed/SeedVR.git}"
|
| 30 |
+
export SEEDVR_REPO_ID="${SEEDVR_REPO_ID:-ByteDance-Seed/SeedVR2-3B}"
|
| 31 |
+
|
| 32 |
+
# Multi-GPU / torchrun
|
| 33 |
+
export NUM_GPUS="${NUM_GPUS:-8}"
|
| 34 |
+
export NCCL_P2P_LEVEL="${NCCL_P2P_LEVEL:-NVL}"
|
| 35 |
+
export NCCL_ASYNC_ERROR_HANDLING="${NCCL_ASYNC_ERROR_HANDLING:-1}"
|
| 36 |
+
export OMP_NUM_THREADS="${OMP_NUM_THREADS:-8}"
|
| 37 |
+
|
| 38 |
+
# Gradio
|
| 39 |
+
export GRADIO_SERVER_NAME="${GRADIO_SERVER_NAME:-0.0.0.0}"
|
| 40 |
+
export GRADIO_SERVER_PORT="${GRADIO_SERVER_PORT:-7860}"
|
| 41 |
+
|
| 42 |
+
mkdir -p "$SEEDVR_ROOT" "$CKPTS_ROOT" "$OUTPUT_ROOT" "$INPUT_ROOT" "$HF_HOME"
|
| 43 |
+
|
| 44 |
+
echo "[seedvr][start] checking environment..."
|
| 45 |
+
command -v python >/dev/null || { echo "[seedvr][start] python not found"; exit 1; }
|
| 46 |
+
command -v nvidia-smi >/dev/null && nvidia-smi || echo "[seedvr][start] warn: nvidia-smi not available"
|
| 47 |
+
|
| 48 |
+
echo "[seedvr][start] cloning repo if missing: $SEEDVR_ROOT"
|
| 49 |
+
if [ ! -d "$SEEDVR_ROOT/.git" ]; then
|
| 50 |
+
git clone "$SEEDVR_GIT_URL" "$SEEDVR_ROOT"
|
| 51 |
+
else
|
| 52 |
+
echo "[seedvr][start] repo present"
|
| 53 |
+
fi
|
| 54 |
+
|
| 55 |
+
echo "[seedvr][start] downloading model (snapshot_download) into $CKPTS_ROOT"
|
| 56 |
+
python - <<PY
|
| 57 |
+
import os
|
| 58 |
+
from pathlib import Path
|
| 59 |
+
from huggingface_hub import snapshot_download
|
| 60 |
+
|
| 61 |
+
repo_id = os.environ["SEEDVR_REPO_ID"]
|
| 62 |
+
save_dir = os.environ["CKPTS_ROOT"]
|
| 63 |
+
cache_dir = os.environ["HF_HOME"]
|
| 64 |
+
token = os.environ.get("HF_TOKEN") or None
|
| 65 |
+
|
| 66 |
+
Path(save_dir).mkdir(parents=True, exist_ok=True)
|
| 67 |
+
snapshot_download(
|
| 68 |
+
repo_id=repo_id,
|
| 69 |
+
cache_dir=cache_dir,
|
| 70 |
+
local_dir=save_dir,
|
| 71 |
+
local_dir_use_symlinks=False,
|
| 72 |
+
resume_download=True,
|
| 73 |
+
allow_patterns=["*.json", "*.safetensors", "*.pth", "*.bin", "*.py", "*.md", "*.txt"],
|
| 74 |
+
token=token,
|
| 75 |
+
)
|
| 76 |
+
print("[seedvr][start] snapshot_download ok:", save_dir)
|
| 77 |
+
PY
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
export OUTPUT_ROOT=/app/outputs
|
| 81 |
+
mkdir -p "$OUTPUT_ROOT" && chmod -R 777 "$OUTPUT_ROOT" || true
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
echo "[seedvr][start] ensuring ckpt symlink SeedVR/ckpts/SeedVR2-3B -> $CKPTS_ROOT"
|
| 85 |
+
mkdir -p "$SEEDVR_ROOT/ckpts"
|
| 86 |
+
if [ -L "$SEEDVR_ROOT/ckpts/SeedVR2-3B" ]; then
|
| 87 |
+
target="$(readlink -f "$SEEDVR_ROOT/ckpts/SeedVR2-3B" || true)"
|
| 88 |
+
if [ "$target" != "$CKPTS_ROOT" ]; then
|
| 89 |
+
rm -f "$SEEDVR_ROOT/ckpts/SeedVR2-3B"
|
| 90 |
+
fi
|
| 91 |
+
fi
|
| 92 |
+
if [ ! -e "$SEEDVR_ROOT/ckpts/SeedVR2-3B" ]; then
|
| 93 |
+
ln -s "$CKPTS_ROOT" "$SEEDVR_ROOT/ckpts/SeedVR2-3B"
|
| 94 |
+
fi
|
| 95 |
+
|
| 96 |
+
echo "[seedvr][start] launching app_seedvr.py at ${GRADIO_SERVER_NAME}:${GRADIO_SERVER_PORT}"
|
| 97 |
+
exec python app_seedvr.py
|