storybook-generator / generate_horror_plot.py
ethanrom's picture
Upload 3 files
9ffa7ce
import os
import requests
import io
from PIL import Image
from langchain import PromptTemplate, LLMChain
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from langchain.llms import OpenAI
import openai
from g4f import Provider, Model
from langchain_g4f import G4FLLM
def set_openai_api_key(api_key):
openai.api_key = api_key
os.environ["OPENAI_API_KEY"] = openai.api_key
template = template = """Write a very short and unsettling {number_of_pages}-sentence horror story with images that will give you chills.
Your answer should be structured like this with <Text> and <Image> tags.
<Text> first sentence of the horror story </Text>
<Image> describe a matching eerie or spooky image for first sentence here without including names so that prompt can be used to generate an image using an ML model.</Image>
<Text> second sentence of the horror story </Text>
<Image> describe a matching eerie or spooky image for second sentence here without including names so that prompt can be used to generate an image using an ML model.</Image>
for all {number_of_pages} sentences.
=============
Answer:"""
prompt = PromptTemplate(template=template, input_variables=["number_of_pages"])
def query(payload):
API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney"
#API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/all-526-animated"
headers = {"Authorization": "Bearer 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"}
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
def query_alt(payload):
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/anything-v5"
headers = {"Authorization": "Bearer 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"}
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
def generate_horror_plot(number_of_pages, selected_style, provider, selected_provider=None):
if provider == "OpenAI":
llm = OpenAI(temperature=0)
elif provider == "G4F":
if selected_provider == "Ails":
llm = G4FLLM(
model=Model.gpt_35_turbo,
provider=Provider.Ails,
)
elif selected_provider == "You":
llm = G4FLLM(
model=Model.gpt_35_turbo,
provider=Provider.You,
)
elif selected_provider == "GetGpt":
llm = G4FLLM(
model=Model.gpt_35_turbo,
provider=Provider.GetGpt,
)
elif selected_provider == "DeepAi":
llm = G4FLLM(
model=Model.gpt_35_turbo,
provider=Provider.DeepAi,
)
elif selected_provider == "Forefront":
llm = G4FLLM(
model=Model.gpt_35_turbo,
provider=Provider.Forefront,
)
elif selected_provider == "Aichat":
llm = G4FLLM(
model=Model.gpt_35_turbo,
provider=Provider.Aichat,
)
elif selected_provider == "Bard":
llm = G4FLLM(
model=Model.gpt_35_turbo,
provider=Provider.Bard,
)
# Add other providers here
else:
raise ValueError("Invalid G4F provider selected.")
else:
raise ValueError("Invalid provider selected.")
llm_chain = LLMChain(prompt=prompt, llm=llm)
response = llm_chain.run(number_of_pages=number_of_pages)
pages = response.split("<Text>")
plot_result = []
additional_texts = {
"Style 1": " chilling horror illustration, dark and mysterious, haunting shadows, eerie atmosphere, spooky vector art, 8k, artist unknown",
"Style 2": " horror story illustration, monochromatic, deep shadows, creepy background, unsettling, digital art, artist unknown",
"Style 3": " horror art, dark and creepy, foggy night, ghostly presence, terrifying, trending on artstation, artist unknown"
}
for i, page in enumerate(pages[1:]):
text, img_text = page.split("<Image>", 1)
selected_additional_text = additional_texts.get(selected_style, "")
new_img_text = img_text.strip() + " " + selected_additional_text
text = text.replace("</Text>", "")
new_img_text = new_img_text.replace("</Image>", "")
plot_result.append((i + 1, "<Text>" + text.strip() + "</Text>", "<Image>" + new_img_text + "</Image>"))
return plot_result
def generate_horror_storybook(plot_result):
storybook = []
for page_number, text, image_text in plot_result:
image_bytes = query({"inputs": image_text})
image = Image.open(io.BytesIO(image_bytes))
blurred_image = image.filter(ImageFilter.GaussianBlur(8))
draw = ImageDraw.Draw(blurred_image)
font_size = 30
font = ImageFont.truetype("Birada!.ttf", font_size)
first_letter_font_size = 60
first_letter_font = ImageFont.truetype("Birada!.ttf", first_letter_font_size)
text_x, text_y = 50, 50
max_width = blurred_image.width - text_x * 2
text = text.replace("<Text>", "").replace("</Text>", "")
wrapped_text = ""
words = text.split()
for i, word in enumerate(words):
if i == 0:
first_letter_width = draw.textsize(word[0], font=first_letter_font)[0]
draw.text((text_x, text_y), word[0], fill="white", font=first_letter_font, stroke_width=2, stroke_fill="black")
text_x += first_letter_width + 10
wrapped_text += word[1:] + " "
elif draw.textsize(wrapped_text + word, font=font)[0] < max_width:
wrapped_text += word + " "
else:
draw.text((text_x, text_y), wrapped_text.strip(), fill="white", font=font, stroke_width=2, stroke_fill="black")
text_y += font.getsize(wrapped_text)[1] + 10
wrapped_text = word + " "
draw.text((text_x, text_y), wrapped_text.strip(), fill="white", font=font, stroke_width=2, stroke_fill="black")
combined_image = Image.new('RGB', (image.width * 2, image.height))
combined_image.paste(blurred_image, (0, 0))
combined_image.paste(image, (image.width, 0))
storybook.append((page_number, combined_image))
return storybook
def generate_book_cover(title, author, image_text):
book_cover = []
image_bytes = query({"inputs": image_text})
image = Image.open(io.BytesIO(image_bytes))
cover_image = Image.new('RGB', (image.width * 2, image.height), color='white')
cover_image.paste(image, (0, 0))
draw = ImageDraw.Draw(cover_image)
font_size = 50
title_font = ImageFont.truetype("DeliusSwashCaps-Regular.ttf", font_size)
author_font = ImageFont.truetype("DeliusSwashCaps-Regular.ttf", 30)
title_x, title_y = image.width + 50, 50
author_x, author_y = image.width + 50, title_y + 100
draw.text((title_x, title_y), title, fill="black", font=title_font)
draw.text((author_x, author_y), "By " + author, fill="black", font=author_font)
book_cover.append(cover_image)
return book_cover