|
import gradio as gr |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
import os |
|
from threading import Thread |
|
import spaces |
|
|
|
token = os.environ["HF_TOKEN"] |
|
model = AutoModelForCausalLM.from_pretrained("google/gemma-1.1-7b-it", |
|
|
|
torch_dtype=torch.float16, |
|
token=token) |
|
tok = AutoTokenizer.from_pretrained("google/gemma-1.1-7b-it",token=token) |
|
|
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device('cuda') |
|
print(f"Using GPU: {torch.cuda.get_device_name(device)}") |
|
else: |
|
device = torch.device('cpu') |
|
print("Using CPU") |
|
model = model.to(device) |
|
|
|
|
|
@spaces.GPU |
|
def chat(message, history): |
|
chat = [] |
|
for item in history: |
|
chat.append({"role": "user", "content": item[0]}) |
|
if item[1] is not None: |
|
chat.append({"role": "assistant", "content": item[1]}) |
|
chat.append({"role": "user", "content": message}) |
|
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) |
|
|
|
model_inputs = tok([messages], return_tensors="pt").to(device) |
|
streamer = TextIteratorStreamer( |
|
tok, timeout=10., skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
model_inputs, |
|
streamer=streamer, |
|
max_new_tokens=1024, |
|
do_sample=True, |
|
top_p=0.95, |
|
top_k=1000, |
|
temperature=0.75, |
|
num_beams=1, |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
|
|
partial_text = "" |
|
for new_text in streamer: |
|
|
|
partial_text += new_text |
|
|
|
yield partial_text |
|
|
|
|
|
|
|
demo = gr.ChatInterface(fn=chat, examples=[["Write me a poem about Machine Learning."]], title="gemma-1.1-7b-it") |
|
demo.launch() |
|
|