from warnings import filterwarnings | |
filterwarnings('ignore') | |
import os | |
import uuid | |
import joblib | |
import json | |
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import CommitScheduler | |
from pathlib import Path | |
# Configure the logging functionality | |
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" | |
log_folder = log_file.parent | |
repo_id = "operand-logs" | |
# Create a commit scheduler | |
scheduler = CommitScheduler( | |
repo_id=repo_id, | |
repo_type="dataset", | |
folder_path=log_folder, | |
path_in_repo="data", | |
every=2 | |
) | |
# # Load the saved model | |
# #insurance_charge_predictor = joblib.load('model.joblib') | |
# # Define the input features | |
# #numeric_features = ['age', 'bmi', 'children'] | |
# #categorical_features = ['sex', 'smoker', 'region'] | |
# age_input = gr.Number(label="Age") | |
# bmi_input = gr.Number(label="BMI") | |
# children_input = gr.Number(label="Children") | |
# # sex: ['female' 'male'] | |
# # smoker: ['yes' 'no'] | |
# # region: ['southwest' 'southeast' 'northwest' 'northeast'] | |
# sex_input = gr.Dropdown(['female','male'],label='Sex') | |
# smoker_input = gr.Dropdown(['yes','no'],label='Smoker') | |
# region_input = gr.Dropdown(['southwest', 'southeast', 'northwest', 'northeast'],label='Region') | |
# model_output = gr.Label(label="charges") | |
# Define the predict function which will take features, convert to dataframe and make predictions using the saved model | |
# the functions runs when 'Submit' is clicked or when a API request is made | |
def dprocess(age, bmi, children, sex, smoker, region): | |
#Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region'], dtype='object') | |
# sample = { | |
# 'age': age, | |
# 'sex': sex, | |
# 'bmi': bmi, | |
# 'children': children, | |
# 'smoker': smoker, | |
# 'region': region | |
# } | |
# data_point = pd.DataFrame([sample]) | |
# prediction = insurance_charge_predictor.predict(data_point).tolist() | |
with scheduler.lock: | |
with log_file.open("a") as f: | |
f.write(json.dumps( | |
{ | |
'age': age, | |
'sex': sex, | |
'bmi': bmi, | |
'children': children, | |
'smoker': smoker, | |
'region': region, | |
'prediction': prediction[0] | |
} | |
)) | |
f.write("\n") | |
#return prediction[0] | |
return 42 | |
# Set-up the Gradio UI | |
textbox = gr.Textbox(label='Command:') | |
company = gr.Radio(label='Company:', | |
choices=["aws", "google", "IBM", "Meta", "msft"], | |
value="aws") | |
# Create Gradio interface | |
# For the inputs parameter of Interface provide [textbox,company] with outputs parameter of Interface provide prediction | |
demo = gr.Interface(fn=dprocess, | |
inputs=[textbox, company], | |
outputs="text", | |
title="operand data automation CLI", | |
description="", | |
theme=gr.themes.Soft()) | |
demo.queue() | |
demo.launch() | |