from warnings import filterwarnings filterwarnings('ignore') import os import uuid import joblib import json import gradio as gr import pandas as pd from huggingface_hub import CommitScheduler from pathlib import Path # Configure the logging functionality log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" log_folder = log_file.parent repo_id = "operand-logs" # Create a commit scheduler scheduler = CommitScheduler( repo_id=repo_id, repo_type="dataset", folder_path=log_folder, path_in_repo="data", every=2 ) # # Load the saved model # #insurance_charge_predictor = joblib.load('model.joblib') # # Define the input features # #numeric_features = ['age', 'bmi', 'children'] # #categorical_features = ['sex', 'smoker', 'region'] # age_input = gr.Number(label="Age") # bmi_input = gr.Number(label="BMI") # children_input = gr.Number(label="Children") # # sex: ['female' 'male'] # # smoker: ['yes' 'no'] # # region: ['southwest' 'southeast' 'northwest' 'northeast'] # sex_input = gr.Dropdown(['female','male'],label='Sex') # smoker_input = gr.Dropdown(['yes','no'],label='Smoker') # region_input = gr.Dropdown(['southwest', 'southeast', 'northwest', 'northeast'],label='Region') # model_output = gr.Label(label="charges") # Define the predict function which will take features, convert to dataframe and make predictions using the saved model # the functions runs when 'Submit' is clicked or when a API request is made def dprocess(age, bmi, children, sex, smoker, region): #Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region'], dtype='object') # sample = { # 'age': age, # 'sex': sex, # 'bmi': bmi, # 'children': children, # 'smoker': smoker, # 'region': region # } # data_point = pd.DataFrame([sample]) # prediction = insurance_charge_predictor.predict(data_point).tolist() with scheduler.lock: with log_file.open("a") as f: f.write(json.dumps( { 'age': age, 'sex': sex, 'bmi': bmi, 'children': children, 'smoker': smoker, 'region': region, 'prediction': prediction[0] } )) f.write("\n") #return prediction[0] return 42 # Set-up the Gradio UI textbox = gr.Textbox(label='Command:') company = gr.Radio(label='Company:', choices=["aws", "google", "IBM", "Meta", "msft"], value="aws") # Create Gradio interface # For the inputs parameter of Interface provide [textbox,company] with outputs parameter of Interface provide prediction demo = gr.Interface(fn=dprocess, inputs=[textbox, company], outputs="text", title="operand data automation CLI", description="", theme=gr.themes.Soft()) demo.queue() demo.launch()