|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
from dataclasses import asdict, dataclass |
|
from pathlib import Path |
|
from typing import Any, Dict, List, Optional, Type, TypeVar, Union |
|
|
|
from huggingface_hub import ModelHubMixin, hf_hub_download |
|
|
|
|
|
T = TypeVar("T", bound="ModelHubMixin") |
|
|
|
TEMPLATE_FILENAME = "dialogue_template.json" |
|
IGNORE_INDEX = -100 |
|
|
|
|
|
@dataclass |
|
class DialogueTemplate(ModelHubMixin): |
|
"""Converts all turns of a dialogue between a user and assistant to a standardized format. |
|
|
|
Adapted from OpenAI's ChatML (https://github.com/openai/openai-python/blob/main/chatml.md) and Vicuna (https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py) |
|
""" |
|
|
|
system: str |
|
messages: List[Dict[str, str]] = None |
|
system_token: str = "<|system|>" |
|
user_token: str = "<|user|>" |
|
assistant_token: str = "<|assistant|>" |
|
end_token: str = "<|end|>" |
|
|
|
def get_training_prompt(self) -> str: |
|
prompt = self.system_token + "\n" + self.system + self.end_token + "\n" |
|
if self.messages is None: |
|
raise ValueError("Dialogue template must have at least one message.") |
|
for message in self.messages: |
|
if message["role"] == "user": |
|
prompt += self.user_token + "\n" + message["content"] + self.end_token + "\n" |
|
else: |
|
prompt += self.assistant_token + "\n" + message["content"] + self.end_token + "\n" |
|
return prompt |
|
|
|
def get_inference_prompt(self) -> str: |
|
prompt = self.system_token + "\n" + self.system + self.end_token + "\n" |
|
if self.messages is None: |
|
raise ValueError("Dialogue template must have at least one message.") |
|
for message in self.messages: |
|
if message["role"] == "user": |
|
prompt += self.user_token + "\n" + message["content"] + self.end_token + "\n" |
|
else: |
|
prompt += self.assistant_token + "\n" + message["content"] + self.end_token + "\n" |
|
prompt += self.assistant_token + "\n" |
|
return prompt |
|
|
|
def get_dialogue(self): |
|
"""Helper function to format the messages as an easy-to-read dialogue.""" |
|
prompt = "" |
|
if self.messages is None: |
|
raise ValueError("Dialogue template must have at least one message.") |
|
for message in self.messages: |
|
if message["role"] == "user": |
|
prompt += "\n\nHuman: " + message["content"] |
|
else: |
|
prompt += "\n\nAssistant: " + message["content"] |
|
return prompt |
|
|
|
def get_special_tokens(self) -> List[str]: |
|
return [self.system_token, self.user_token, self.assistant_token, self.end_token] |
|
|
|
def copy(self): |
|
return DialogueTemplate( |
|
system=self.system, |
|
messages=self.messages, |
|
system_token=self.system_token, |
|
user_token=self.user_token, |
|
assistant_token=self.assistant_token, |
|
end_token=self.end_token, |
|
) |
|
|
|
def to_dict(self) -> Dict[str, Any]: |
|
return {k: v for k, v in asdict(self).items()} |
|
|
|
@classmethod |
|
def from_dict(cls, data): |
|
return DialogueTemplate( |
|
system=data["system"] if "system" in data else "", |
|
messages=data["messages"] if "messages" in data else None, |
|
system_token=data["system_token"] if "system_token" in data else "<|system|>", |
|
user_token=data["user_token"] if "user_token" in data else "<|user|>", |
|
assistant_token=data["assistant_token"] if "assistant_token" in data else "<|assistant|>", |
|
end_token=data["end_token"] if "end_token" in data else "<|end|>", |
|
) |
|
|
|
def _save_pretrained(self, save_directory: Union[str, Path]) -> None: |
|
save_directory = Path(save_directory) |
|
save_directory.mkdir(exist_ok=True) |
|
with open(save_directory / "dialogue_template.json", "w") as f: |
|
json.dump(self.to_dict(), f, indent=2) |
|
|
|
@classmethod |
|
def _from_pretrained( |
|
cls: Type[T], |
|
*, |
|
model_id: str, |
|
revision: Optional[str], |
|
cache_dir: Optional[Union[str, Path]], |
|
force_download: bool, |
|
proxies: Optional[Dict], |
|
resume_download: bool, |
|
local_files_only: bool, |
|
token: Optional[Union[str, bool]], |
|
**model_kwargs, |
|
) -> T: |
|
"""Loads the dialogue template from a local directory or the Huggingface Hub. |
|
|
|
Args: |
|
model_id (`str`): |
|
ID of the model to load from the Huggingface Hub (e.g. `bigscience/bloom`). |
|
revision (`str`, *optional*): |
|
Revision of the model on the Hub. Can be a branch name, a git tag or any commit id. Defaults to the |
|
latest commit on `main` branch. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether to force (re-)downloading the model weights and configuration files from the Hub, overriding |
|
the existing cache. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether to delete incompletely received files. Will attempt to resume the download if such a file exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint (e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`). |
|
token (`str` or `bool`, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. By default, it will use the token |
|
cached when running `huggingface-cli login`. |
|
cache_dir (`str`, `Path`, *optional*): |
|
Path to the folder where cached files are stored. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
If `True`, avoid downloading the file and return the path to the local cached file if it exists. |
|
model_kwargs: |
|
Additional keyword arguments passed along to the [`~ModelHubMixin._from_pretrained`] method. |
|
""" |
|
if os.path.isdir(model_id): |
|
print("Loading dialogue template from local directory") |
|
template_file = os.path.join(model_id, TEMPLATE_FILENAME) |
|
else: |
|
template_file = hf_hub_download( |
|
repo_id=model_id, |
|
filename=TEMPLATE_FILENAME, |
|
revision=revision, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
token=token, |
|
local_files_only=local_files_only, |
|
) |
|
|
|
|
|
with open(template_file, "r") as f: |
|
data = json.load(f) |
|
return cls.from_dict(data=data) |
|
|
|
|
|
|
|
default_template = DialogueTemplate( |
|
system="Below is a dialogue between a human user and an AI assistant. The assistant is happy to help with almost anything, and will do its best to understand exactly what is needed.", |
|
) |
|
|
|
|
|
|
|
no_system_template = DialogueTemplate( |
|
system="", |
|
) |
|
|
|
alpaca_template = DialogueTemplate( |
|
system="Below is an instruction that describes a task. Write a response that appropriately completes the request.", |
|
user_token="### Instruction:", |
|
assistant_token="### Response:", |
|
) |
|
|
|
SUPPORTED_DIALOGUE_TEMPLATES = { |
|
"default": default_template, |
|
"no_system": no_system_template, |
|
"alpaca": alpaca_template, |
|
} |
|
|
|
|
|
def get_dialogue_template(template: str) -> DialogueTemplate: |
|
if template not in SUPPORTED_DIALOGUE_TEMPLATES.keys(): |
|
raise ValueError(f"Template {template} is not supported!") |
|
return SUPPORTED_DIALOGUE_TEMPLATES[template].copy() |
|
|
|
|
|
def prepare_dialogue(example, dialogue_template, is_train=True): |
|
"""Format example to single- or multi-turn dialogue.""" |
|
|
|
if "messages" in example.keys() and example["messages"] is not None: |
|
dialogue_template.messages = example["messages"] |
|
elif all(k in example.keys() for k in ("prompt", "completion")): |
|
|
|
dialogue_template.messages = [ |
|
{"role": "user", "content": example["prompt"]}, |
|
{"role": "assistant", "content": example["completion"]}, |
|
] |
|
elif "prompt" in example.keys(): |
|
|
|
dialogue_template.messages = [ |
|
{"role": "user", "content": example["prompt"]}, |
|
] |
|
else: |
|
raise ValueError( |
|
f"Could not format example as dialogue! Require either `messages` or `[prompt, completion]` or `[prompt]` keys but found {list(example.keys())}" |
|
) |
|
if is_train: |
|
example["text"] = dialogue_template.get_training_prompt() |
|
else: |
|
example["text"] = dialogue_template.get_inference_prompt() |
|
return example |
|
|
|
|
|
def mask_user_labels(tokenizer, dialogue_template, labels): |
|
"""Masks the user turns of a dialogue from the loss""" |
|
user_token_id = tokenizer.convert_tokens_to_ids(dialogue_template.user_token) |
|
assistant_token_id = tokenizer.convert_tokens_to_ids(dialogue_template.assistant_token) |
|
for idx, label_id in enumerate(labels): |
|
if label_id == user_token_id: |
|
current_idx = idx |
|
while labels[current_idx] != assistant_token_id and current_idx < len(labels): |
|
labels[current_idx] = IGNORE_INDEX |
|
current_idx += 1 |
|
|