Spaces:
Runtime error
Runtime error
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import math | |
| import warnings | |
| from typing import List, Optional, Tuple, Union | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| import torch.nn.functional as F | |
| from PIL import Image, ImageFilter, ImageOps | |
| from .configuration_utils import ConfigMixin, register_to_config | |
| from .utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate | |
| PipelineImageInput = Union[ | |
| PIL.Image.Image, | |
| np.ndarray, | |
| torch.Tensor, | |
| List[PIL.Image.Image], | |
| List[np.ndarray], | |
| List[torch.Tensor], | |
| ] | |
| PipelineDepthInput = PipelineImageInput | |
| def is_valid_image(image) -> bool: | |
| r""" | |
| Checks if the input is a valid image. | |
| A valid image can be: | |
| - A `PIL.Image.Image`. | |
| - A 2D or 3D `np.ndarray` or `torch.Tensor` (grayscale or color image). | |
| Args: | |
| image (`Union[PIL.Image.Image, np.ndarray, torch.Tensor]`): | |
| The image to validate. It can be a PIL image, a NumPy array, or a torch tensor. | |
| Returns: | |
| `bool`: | |
| `True` if the input is a valid image, `False` otherwise. | |
| """ | |
| return isinstance(image, PIL.Image.Image) or isinstance(image, (np.ndarray, torch.Tensor)) and image.ndim in (2, 3) | |
| def is_valid_image_imagelist(images): | |
| r""" | |
| Checks if the input is a valid image or list of images. | |
| The input can be one of the following formats: | |
| - A 4D tensor or numpy array (batch of images). | |
| - A valid single image: `PIL.Image.Image`, 2D `np.ndarray` or `torch.Tensor` (grayscale image), 3D `np.ndarray` or | |
| `torch.Tensor`. | |
| - A list of valid images. | |
| Args: | |
| images (`Union[np.ndarray, torch.Tensor, PIL.Image.Image, List]`): | |
| The image(s) to check. Can be a batch of images (4D tensor/array), a single image, or a list of valid | |
| images. | |
| Returns: | |
| `bool`: | |
| `True` if the input is valid, `False` otherwise. | |
| """ | |
| if isinstance(images, (np.ndarray, torch.Tensor)) and images.ndim == 4: | |
| return True | |
| elif is_valid_image(images): | |
| return True | |
| elif isinstance(images, list): | |
| return all(is_valid_image(image) for image in images) | |
| return False | |
| class VaeImageProcessor(ConfigMixin): | |
| """ | |
| Image processor for VAE. | |
| Args: | |
| do_resize (`bool`, *optional*, defaults to `True`): | |
| Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept | |
| `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method. | |
| vae_scale_factor (`int`, *optional*, defaults to `8`): | |
| VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. | |
| resample (`str`, *optional*, defaults to `lanczos`): | |
| Resampling filter to use when resizing the image. | |
| do_normalize (`bool`, *optional*, defaults to `True`): | |
| Whether to normalize the image to [-1,1]. | |
| do_binarize (`bool`, *optional*, defaults to `False`): | |
| Whether to binarize the image to 0/1. | |
| do_convert_rgb (`bool`, *optional*, defaults to be `False`): | |
| Whether to convert the images to RGB format. | |
| do_convert_grayscale (`bool`, *optional*, defaults to be `False`): | |
| Whether to convert the images to grayscale format. | |
| """ | |
| config_name = CONFIG_NAME | |
| def __init__( | |
| self, | |
| do_resize: bool = True, | |
| vae_scale_factor: int = 8, | |
| vae_latent_channels: int = 4, | |
| resample: str = "lanczos", | |
| reducing_gap: int = None, | |
| do_normalize: bool = True, | |
| do_binarize: bool = False, | |
| do_convert_rgb: bool = False, | |
| do_convert_grayscale: bool = False, | |
| ): | |
| super().__init__() | |
| if do_convert_rgb and do_convert_grayscale: | |
| raise ValueError( | |
| "`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`," | |
| " if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.", | |
| " if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`", | |
| ) | |
| def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]: | |
| r""" | |
| Convert a numpy image or a batch of images to a PIL image. | |
| Args: | |
| images (`np.ndarray`): | |
| The image array to convert to PIL format. | |
| Returns: | |
| `List[PIL.Image.Image]`: | |
| A list of PIL images. | |
| """ | |
| if images.ndim == 3: | |
| images = images[None, ...] | |
| images = (images * 255).round().astype("uint8") | |
| if images.shape[-1] == 1: | |
| # special case for grayscale (single channel) images | |
| pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images] | |
| else: | |
| pil_images = [Image.fromarray(image) for image in images] | |
| return pil_images | |
| def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray: | |
| r""" | |
| Convert a PIL image or a list of PIL images to NumPy arrays. | |
| Args: | |
| images (`PIL.Image.Image` or `List[PIL.Image.Image]`): | |
| The PIL image or list of images to convert to NumPy format. | |
| Returns: | |
| `np.ndarray`: | |
| A NumPy array representation of the images. | |
| """ | |
| if not isinstance(images, list): | |
| images = [images] | |
| images = [np.array(image).astype(np.float32) / 255.0 for image in images] | |
| images = np.stack(images, axis=0) | |
| return images | |
| def numpy_to_pt(images: np.ndarray) -> torch.Tensor: | |
| r""" | |
| Convert a NumPy image to a PyTorch tensor. | |
| Args: | |
| images (`np.ndarray`): | |
| The NumPy image array to convert to PyTorch format. | |
| Returns: | |
| `torch.Tensor`: | |
| A PyTorch tensor representation of the images. | |
| """ | |
| if images.ndim == 3: | |
| images = images[..., None] | |
| images = torch.from_numpy(images.transpose(0, 3, 1, 2)) | |
| return images | |
| def pt_to_numpy(images: torch.Tensor) -> np.ndarray: | |
| r""" | |
| Convert a PyTorch tensor to a NumPy image. | |
| Args: | |
| images (`torch.Tensor`): | |
| The PyTorch tensor to convert to NumPy format. | |
| Returns: | |
| `np.ndarray`: | |
| A NumPy array representation of the images. | |
| """ | |
| images = images.cpu().permute(0, 2, 3, 1).float().numpy() | |
| return images | |
| def normalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]: | |
| r""" | |
| Normalize an image array to [-1,1]. | |
| Args: | |
| images (`np.ndarray` or `torch.Tensor`): | |
| The image array to normalize. | |
| Returns: | |
| `np.ndarray` or `torch.Tensor`: | |
| The normalized image array. | |
| """ | |
| return 2.0 * images - 1.0 | |
| def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]: | |
| r""" | |
| Denormalize an image array to [0,1]. | |
| Args: | |
| images (`np.ndarray` or `torch.Tensor`): | |
| The image array to denormalize. | |
| Returns: | |
| `np.ndarray` or `torch.Tensor`: | |
| The denormalized image array. | |
| """ | |
| return (images * 0.5 + 0.5).clamp(0, 1) | |
| def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image: | |
| r""" | |
| Converts a PIL image to RGB format. | |
| Args: | |
| image (`PIL.Image.Image`): | |
| The PIL image to convert to RGB. | |
| Returns: | |
| `PIL.Image.Image`: | |
| The RGB-converted PIL image. | |
| """ | |
| image = image.convert("RGB") | |
| return image | |
| def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image: | |
| r""" | |
| Converts a given PIL image to grayscale. | |
| Args: | |
| image (`PIL.Image.Image`): | |
| The input image to convert. | |
| Returns: | |
| `PIL.Image.Image`: | |
| The image converted to grayscale. | |
| """ | |
| image = image.convert("L") | |
| return image | |
| def blur(image: PIL.Image.Image, blur_factor: int = 4) -> PIL.Image.Image: | |
| r""" | |
| Applies Gaussian blur to an image. | |
| Args: | |
| image (`PIL.Image.Image`): | |
| The PIL image to convert to grayscale. | |
| Returns: | |
| `PIL.Image.Image`: | |
| The grayscale-converted PIL image. | |
| """ | |
| image = image.filter(ImageFilter.GaussianBlur(blur_factor)) | |
| return image | |
| def get_crop_region(mask_image: PIL.Image.Image, width: int, height: int, pad=0): | |
| r""" | |
| Finds a rectangular region that contains all masked ares in an image, and expands region to match the aspect | |
| ratio of the original image; for example, if user drew mask in a 128x32 region, and the dimensions for | |
| processing are 512x512, the region will be expanded to 128x128. | |
| Args: | |
| mask_image (PIL.Image.Image): Mask image. | |
| width (int): Width of the image to be processed. | |
| height (int): Height of the image to be processed. | |
| pad (int, optional): Padding to be added to the crop region. Defaults to 0. | |
| Returns: | |
| tuple: (x1, y1, x2, y2) represent a rectangular region that contains all masked ares in an image and | |
| matches the original aspect ratio. | |
| """ | |
| mask_image = mask_image.convert("L") | |
| mask = np.array(mask_image) | |
| # 1. find a rectangular region that contains all masked ares in an image | |
| h, w = mask.shape | |
| crop_left = 0 | |
| for i in range(w): | |
| if not (mask[:, i] == 0).all(): | |
| break | |
| crop_left += 1 | |
| crop_right = 0 | |
| for i in reversed(range(w)): | |
| if not (mask[:, i] == 0).all(): | |
| break | |
| crop_right += 1 | |
| crop_top = 0 | |
| for i in range(h): | |
| if not (mask[i] == 0).all(): | |
| break | |
| crop_top += 1 | |
| crop_bottom = 0 | |
| for i in reversed(range(h)): | |
| if not (mask[i] == 0).all(): | |
| break | |
| crop_bottom += 1 | |
| # 2. add padding to the crop region | |
| x1, y1, x2, y2 = ( | |
| int(max(crop_left - pad, 0)), | |
| int(max(crop_top - pad, 0)), | |
| int(min(w - crop_right + pad, w)), | |
| int(min(h - crop_bottom + pad, h)), | |
| ) | |
| # 3. expands crop region to match the aspect ratio of the image to be processed | |
| ratio_crop_region = (x2 - x1) / (y2 - y1) | |
| ratio_processing = width / height | |
| if ratio_crop_region > ratio_processing: | |
| desired_height = (x2 - x1) / ratio_processing | |
| desired_height_diff = int(desired_height - (y2 - y1)) | |
| y1 -= desired_height_diff // 2 | |
| y2 += desired_height_diff - desired_height_diff // 2 | |
| if y2 >= mask_image.height: | |
| diff = y2 - mask_image.height | |
| y2 -= diff | |
| y1 -= diff | |
| if y1 < 0: | |
| y2 -= y1 | |
| y1 -= y1 | |
| if y2 >= mask_image.height: | |
| y2 = mask_image.height | |
| else: | |
| desired_width = (y2 - y1) * ratio_processing | |
| desired_width_diff = int(desired_width - (x2 - x1)) | |
| x1 -= desired_width_diff // 2 | |
| x2 += desired_width_diff - desired_width_diff // 2 | |
| if x2 >= mask_image.width: | |
| diff = x2 - mask_image.width | |
| x2 -= diff | |
| x1 -= diff | |
| if x1 < 0: | |
| x2 -= x1 | |
| x1 -= x1 | |
| if x2 >= mask_image.width: | |
| x2 = mask_image.width | |
| return x1, y1, x2, y2 | |
| def _resize_and_fill( | |
| self, | |
| image: PIL.Image.Image, | |
| width: int, | |
| height: int, | |
| ) -> PIL.Image.Image: | |
| r""" | |
| Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center | |
| the image within the dimensions, filling empty with data from image. | |
| Args: | |
| image (`PIL.Image.Image`): | |
| The image to resize and fill. | |
| width (`int`): | |
| The width to resize the image to. | |
| height (`int`): | |
| The height to resize the image to. | |
| Returns: | |
| `PIL.Image.Image`: | |
| The resized and filled image. | |
| """ | |
| ratio = width / height | |
| src_ratio = image.width / image.height | |
| src_w = width if ratio < src_ratio else image.width * height // image.height | |
| src_h = height if ratio >= src_ratio else image.height * width // image.width | |
| resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"]) | |
| res = Image.new("RGB", (width, height)) | |
| res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) | |
| if ratio < src_ratio: | |
| fill_height = height // 2 - src_h // 2 | |
| if fill_height > 0: | |
| res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0)) | |
| res.paste( | |
| resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), | |
| box=(0, fill_height + src_h), | |
| ) | |
| elif ratio > src_ratio: | |
| fill_width = width // 2 - src_w // 2 | |
| if fill_width > 0: | |
| res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0)) | |
| res.paste( | |
| resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), | |
| box=(fill_width + src_w, 0), | |
| ) | |
| return res | |
| def _resize_and_crop( | |
| self, | |
| image: PIL.Image.Image, | |
| width: int, | |
| height: int, | |
| ) -> PIL.Image.Image: | |
| r""" | |
| Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center | |
| the image within the dimensions, cropping the excess. | |
| Args: | |
| image (`PIL.Image.Image`): | |
| The image to resize and crop. | |
| width (`int`): | |
| The width to resize the image to. | |
| height (`int`): | |
| The height to resize the image to. | |
| Returns: | |
| `PIL.Image.Image`: | |
| The resized and cropped image. | |
| """ | |
| ratio = width / height | |
| src_ratio = image.width / image.height | |
| src_w = width if ratio > src_ratio else image.width * height // image.height | |
| src_h = height if ratio <= src_ratio else image.height * width // image.width | |
| resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"]) | |
| res = Image.new("RGB", (width, height)) | |
| res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) | |
| return res | |
| def resize( | |
| self, | |
| image: Union[PIL.Image.Image, np.ndarray, torch.Tensor], | |
| height: int, | |
| width: int, | |
| resize_mode: str = "default", # "default", "fill", "crop" | |
| ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]: | |
| """ | |
| Resize image. | |
| Args: | |
| image (`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`): | |
| The image input, can be a PIL image, numpy array or pytorch tensor. | |
| height (`int`): | |
| The height to resize to. | |
| width (`int`): | |
| The width to resize to. | |
| resize_mode (`str`, *optional*, defaults to `default`): | |
| The resize mode to use, can be one of `default` or `fill`. If `default`, will resize the image to fit | |
| within the specified width and height, and it may not maintaining the original aspect ratio. If `fill`, | |
| will resize the image to fit within the specified width and height, maintaining the aspect ratio, and | |
| then center the image within the dimensions, filling empty with data from image. If `crop`, will resize | |
| the image to fit within the specified width and height, maintaining the aspect ratio, and then center | |
| the image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only | |
| supported for PIL image input. | |
| Returns: | |
| `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`: | |
| The resized image. | |
| """ | |
| if resize_mode != "default" and not isinstance(image, PIL.Image.Image): | |
| raise ValueError(f"Only PIL image input is supported for resize_mode {resize_mode}") | |
| if isinstance(image, PIL.Image.Image): | |
| if resize_mode == "default": | |
| image = image.resize( | |
| (width, height), | |
| resample=PIL_INTERPOLATION[self.config.resample], | |
| reducing_gap=self.config.reducing_gap, | |
| ) | |
| elif resize_mode == "fill": | |
| image = self._resize_and_fill(image, width, height) | |
| elif resize_mode == "crop": | |
| image = self._resize_and_crop(image, width, height) | |
| else: | |
| raise ValueError(f"resize_mode {resize_mode} is not supported") | |
| elif isinstance(image, torch.Tensor): | |
| image = torch.nn.functional.interpolate( | |
| image, | |
| size=(height, width), | |
| ) | |
| elif isinstance(image, np.ndarray): | |
| image = self.numpy_to_pt(image) | |
| image = torch.nn.functional.interpolate( | |
| image, | |
| size=(height, width), | |
| ) | |
| image = self.pt_to_numpy(image) | |
| return image | |
| def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image: | |
| """ | |
| Create a mask. | |
| Args: | |
| image (`PIL.Image.Image`): | |
| The image input, should be a PIL image. | |
| Returns: | |
| `PIL.Image.Image`: | |
| The binarized image. Values less than 0.5 are set to 0, values greater than 0.5 are set to 1. | |
| """ | |
| image[image < 0.5] = 0 | |
| image[image >= 0.5] = 1 | |
| return image | |
| def _denormalize_conditionally( | |
| self, images: torch.Tensor, do_denormalize: Optional[List[bool]] = None | |
| ) -> torch.Tensor: | |
| r""" | |
| Denormalize a batch of images based on a condition list. | |
| Args: | |
| images (`torch.Tensor`): | |
| The input image tensor. | |
| do_denormalize (`Optional[List[bool]`, *optional*, defaults to `None`): | |
| A list of booleans indicating whether to denormalize each image in the batch. If `None`, will use the | |
| value of `do_normalize` in the `VaeImageProcessor` config. | |
| """ | |
| if do_denormalize is None: | |
| return self.denormalize(images) if self.config.do_normalize else images | |
| return torch.stack( | |
| [self.denormalize(images[i]) if do_denormalize[i] else images[i] for i in range(images.shape[0])] | |
| ) | |
| def get_default_height_width( | |
| self, | |
| image: Union[PIL.Image.Image, np.ndarray, torch.Tensor], | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| ) -> Tuple[int, int]: | |
| r""" | |
| Returns the height and width of the image, downscaled to the next integer multiple of `vae_scale_factor`. | |
| Args: | |
| image (`Union[PIL.Image.Image, np.ndarray, torch.Tensor]`): | |
| The image input, which can be a PIL image, NumPy array, or PyTorch tensor. If it is a NumPy array, it | |
| should have shape `[batch, height, width]` or `[batch, height, width, channels]`. If it is a PyTorch | |
| tensor, it should have shape `[batch, channels, height, width]`. | |
| height (`Optional[int]`, *optional*, defaults to `None`): | |
| The height of the preprocessed image. If `None`, the height of the `image` input will be used. | |
| width (`Optional[int]`, *optional*, defaults to `None`): | |
| The width of the preprocessed image. If `None`, the width of the `image` input will be used. | |
| Returns: | |
| `Tuple[int, int]`: | |
| A tuple containing the height and width, both resized to the nearest integer multiple of | |
| `vae_scale_factor`. | |
| """ | |
| if height is None: | |
| if isinstance(image, PIL.Image.Image): | |
| height = image.height | |
| elif isinstance(image, torch.Tensor): | |
| height = image.shape[2] | |
| else: | |
| height = image.shape[1] | |
| if width is None: | |
| if isinstance(image, PIL.Image.Image): | |
| width = image.width | |
| elif isinstance(image, torch.Tensor): | |
| width = image.shape[3] | |
| else: | |
| width = image.shape[2] | |
| width, height = ( | |
| x - x % self.config.vae_scale_factor for x in (width, height) | |
| ) # resize to integer multiple of vae_scale_factor | |
| return height, width | |
| def preprocess( | |
| self, | |
| image: PipelineImageInput, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| resize_mode: str = "default", # "default", "fill", "crop" | |
| crops_coords: Optional[Tuple[int, int, int, int]] = None, | |
| ) -> torch.Tensor: | |
| """ | |
| Preprocess the image input. | |
| Args: | |
| image (`PipelineImageInput`): | |
| The image input, accepted formats are PIL images, NumPy arrays, PyTorch tensors; Also accept list of | |
| supported formats. | |
| height (`int`, *optional*): | |
| The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default | |
| height. | |
| width (`int`, *optional*): | |
| The width in preprocessed. If `None`, will use get_default_height_width()` to get the default width. | |
| resize_mode (`str`, *optional*, defaults to `default`): | |
| The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit within | |
| the specified width and height, and it may not maintaining the original aspect ratio. If `fill`, will | |
| resize the image to fit within the specified width and height, maintaining the aspect ratio, and then | |
| center the image within the dimensions, filling empty with data from image. If `crop`, will resize the | |
| image to fit within the specified width and height, maintaining the aspect ratio, and then center the | |
| image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only | |
| supported for PIL image input. | |
| crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`): | |
| The crop coordinates for each image in the batch. If `None`, will not crop the image. | |
| Returns: | |
| `torch.Tensor`: | |
| The preprocessed image. | |
| """ | |
| supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor) | |
| # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image | |
| if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and image.ndim == 3: | |
| if isinstance(image, torch.Tensor): | |
| # if image is a pytorch tensor could have 2 possible shapes: | |
| # 1. batch x height x width: we should insert the channel dimension at position 1 | |
| # 2. channel x height x width: we should insert batch dimension at position 0, | |
| # however, since both channel and batch dimension has same size 1, it is same to insert at position 1 | |
| # for simplicity, we insert a dimension of size 1 at position 1 for both cases | |
| image = image.unsqueeze(1) | |
| else: | |
| # if it is a numpy array, it could have 2 possible shapes: | |
| # 1. batch x height x width: insert channel dimension on last position | |
| # 2. height x width x channel: insert batch dimension on first position | |
| if image.shape[-1] == 1: | |
| image = np.expand_dims(image, axis=0) | |
| else: | |
| image = np.expand_dims(image, axis=-1) | |
| if isinstance(image, list) and isinstance(image[0], np.ndarray) and image[0].ndim == 4: | |
| warnings.warn( | |
| "Passing `image` as a list of 4d np.ndarray is deprecated." | |
| "Please concatenate the list along the batch dimension and pass it as a single 4d np.ndarray", | |
| FutureWarning, | |
| ) | |
| image = np.concatenate(image, axis=0) | |
| if isinstance(image, list) and isinstance(image[0], torch.Tensor) and image[0].ndim == 4: | |
| warnings.warn( | |
| "Passing `image` as a list of 4d torch.Tensor is deprecated." | |
| "Please concatenate the list along the batch dimension and pass it as a single 4d torch.Tensor", | |
| FutureWarning, | |
| ) | |
| image = torch.cat(image, axis=0) | |
| if not is_valid_image_imagelist(image): | |
| raise ValueError( | |
| f"Input is in incorrect format. Currently, we only support {', '.join(str(x) for x in supported_formats)}" | |
| ) | |
| if not isinstance(image, list): | |
| image = [image] | |
| if isinstance(image[0], PIL.Image.Image): | |
| if crops_coords is not None: | |
| image = [i.crop(crops_coords) for i in image] | |
| if self.config.do_resize: | |
| height, width = self.get_default_height_width(image[0], height, width) | |
| image = [self.resize(i, height, width, resize_mode=resize_mode) for i in image] | |
| if self.config.do_convert_rgb: | |
| image = [self.convert_to_rgb(i) for i in image] | |
| elif self.config.do_convert_grayscale: | |
| image = [self.convert_to_grayscale(i) for i in image] | |
| image = self.pil_to_numpy(image) # to np | |
| image = self.numpy_to_pt(image) # to pt | |
| elif isinstance(image[0], np.ndarray): | |
| image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0) | |
| image = self.numpy_to_pt(image) | |
| height, width = self.get_default_height_width(image, height, width) | |
| if self.config.do_resize: | |
| image = self.resize(image, height, width) | |
| elif isinstance(image[0], torch.Tensor): | |
| image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0) | |
| if self.config.do_convert_grayscale and image.ndim == 3: | |
| image = image.unsqueeze(1) | |
| channel = image.shape[1] | |
| # don't need any preprocess if the image is latents | |
| if channel == self.config.vae_latent_channels: | |
| return image | |
| height, width = self.get_default_height_width(image, height, width) | |
| if self.config.do_resize: | |
| image = self.resize(image, height, width) | |
| # expected range [0,1], normalize to [-1,1] | |
| do_normalize = self.config.do_normalize | |
| if do_normalize and image.min() < 0: | |
| warnings.warn( | |
| "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] " | |
| f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]", | |
| FutureWarning, | |
| ) | |
| do_normalize = False | |
| if do_normalize: | |
| image = self.normalize(image) | |
| if self.config.do_binarize: | |
| image = self.binarize(image) | |
| return image | |
| def postprocess( | |
| self, | |
| image: torch.Tensor, | |
| output_type: str = "pil", | |
| do_denormalize: Optional[List[bool]] = None, | |
| ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]: | |
| """ | |
| Postprocess the image output from tensor to `output_type`. | |
| Args: | |
| image (`torch.Tensor`): | |
| The image input, should be a pytorch tensor with shape `B x C x H x W`. | |
| output_type (`str`, *optional*, defaults to `pil`): | |
| The output type of the image, can be one of `pil`, `np`, `pt`, `latent`. | |
| do_denormalize (`List[bool]`, *optional*, defaults to `None`): | |
| Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the | |
| `VaeImageProcessor` config. | |
| Returns: | |
| `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`: | |
| The postprocessed image. | |
| """ | |
| if not isinstance(image, torch.Tensor): | |
| raise ValueError( | |
| f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor" | |
| ) | |
| if output_type not in ["latent", "pt", "np", "pil"]: | |
| deprecation_message = ( | |
| f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: " | |
| "`pil`, `np`, `pt`, `latent`" | |
| ) | |
| deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False) | |
| output_type = "np" | |
| if output_type == "latent": | |
| return image | |
| image = self._denormalize_conditionally(image, do_denormalize) | |
| if output_type == "pt": | |
| return image | |
| image = self.pt_to_numpy(image) | |
| if output_type == "np": | |
| return image | |
| if output_type == "pil": | |
| return self.numpy_to_pil(image) | |
| def apply_overlay( | |
| self, | |
| mask: PIL.Image.Image, | |
| init_image: PIL.Image.Image, | |
| image: PIL.Image.Image, | |
| crop_coords: Optional[Tuple[int, int, int, int]] = None, | |
| ) -> PIL.Image.Image: | |
| r""" | |
| Applies an overlay of the mask and the inpainted image on the original image. | |
| Args: | |
| mask (`PIL.Image.Image`): | |
| The mask image that highlights regions to overlay. | |
| init_image (`PIL.Image.Image`): | |
| The original image to which the overlay is applied. | |
| image (`PIL.Image.Image`): | |
| The image to overlay onto the original. | |
| crop_coords (`Tuple[int, int, int, int]`, *optional*): | |
| Coordinates to crop the image. If provided, the image will be cropped accordingly. | |
| Returns: | |
| `PIL.Image.Image`: | |
| The final image with the overlay applied. | |
| """ | |
| width, height = init_image.width, init_image.height | |
| init_image_masked = PIL.Image.new("RGBa", (width, height)) | |
| init_image_masked.paste(init_image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert("L"))) | |
| init_image_masked = init_image_masked.convert("RGBA") | |
| if crop_coords is not None: | |
| x, y, x2, y2 = crop_coords | |
| w = x2 - x | |
| h = y2 - y | |
| base_image = PIL.Image.new("RGBA", (width, height)) | |
| image = self.resize(image, height=h, width=w, resize_mode="crop") | |
| base_image.paste(image, (x, y)) | |
| image = base_image.convert("RGB") | |
| image = image.convert("RGBA") | |
| image.alpha_composite(init_image_masked) | |
| image = image.convert("RGB") | |
| return image | |
| class VaeImageProcessorLDM3D(VaeImageProcessor): | |
| """ | |
| Image processor for VAE LDM3D. | |
| Args: | |
| do_resize (`bool`, *optional*, defaults to `True`): | |
| Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. | |
| vae_scale_factor (`int`, *optional*, defaults to `8`): | |
| VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. | |
| resample (`str`, *optional*, defaults to `lanczos`): | |
| Resampling filter to use when resizing the image. | |
| do_normalize (`bool`, *optional*, defaults to `True`): | |
| Whether to normalize the image to [-1,1]. | |
| """ | |
| config_name = CONFIG_NAME | |
| def __init__( | |
| self, | |
| do_resize: bool = True, | |
| vae_scale_factor: int = 8, | |
| resample: str = "lanczos", | |
| do_normalize: bool = True, | |
| ): | |
| super().__init__() | |
| def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]: | |
| r""" | |
| Convert a NumPy image or a batch of images to a list of PIL images. | |
| Args: | |
| images (`np.ndarray`): | |
| The input NumPy array of images, which can be a single image or a batch. | |
| Returns: | |
| `List[PIL.Image.Image]`: | |
| A list of PIL images converted from the input NumPy array. | |
| """ | |
| if images.ndim == 3: | |
| images = images[None, ...] | |
| images = (images * 255).round().astype("uint8") | |
| if images.shape[-1] == 1: | |
| # special case for grayscale (single channel) images | |
| pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images] | |
| else: | |
| pil_images = [Image.fromarray(image[:, :, :3]) for image in images] | |
| return pil_images | |
| def depth_pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray: | |
| r""" | |
| Convert a PIL image or a list of PIL images to NumPy arrays. | |
| Args: | |
| images (`Union[List[PIL.Image.Image], PIL.Image.Image]`): | |
| The input image or list of images to be converted. | |
| Returns: | |
| `np.ndarray`: | |
| A NumPy array of the converted images. | |
| """ | |
| if not isinstance(images, list): | |
| images = [images] | |
| images = [np.array(image).astype(np.float32) / (2**16 - 1) for image in images] | |
| images = np.stack(images, axis=0) | |
| return images | |
| def rgblike_to_depthmap(image: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]: | |
| r""" | |
| Convert an RGB-like depth image to a depth map. | |
| Args: | |
| image (`Union[np.ndarray, torch.Tensor]`): | |
| The RGB-like depth image to convert. | |
| Returns: | |
| `Union[np.ndarray, torch.Tensor]`: | |
| The corresponding depth map. | |
| """ | |
| return image[:, :, 1] * 2**8 + image[:, :, 2] | |
| def numpy_to_depth(self, images: np.ndarray) -> List[PIL.Image.Image]: | |
| r""" | |
| Convert a NumPy depth image or a batch of images to a list of PIL images. | |
| Args: | |
| images (`np.ndarray`): | |
| The input NumPy array of depth images, which can be a single image or a batch. | |
| Returns: | |
| `List[PIL.Image.Image]`: | |
| A list of PIL images converted from the input NumPy depth images. | |
| """ | |
| if images.ndim == 3: | |
| images = images[None, ...] | |
| images_depth = images[:, :, :, 3:] | |
| if images.shape[-1] == 6: | |
| images_depth = (images_depth * 255).round().astype("uint8") | |
| pil_images = [ | |
| Image.fromarray(self.rgblike_to_depthmap(image_depth), mode="I;16") for image_depth in images_depth | |
| ] | |
| elif images.shape[-1] == 4: | |
| images_depth = (images_depth * 65535.0).astype(np.uint16) | |
| pil_images = [Image.fromarray(image_depth, mode="I;16") for image_depth in images_depth] | |
| else: | |
| raise Exception("Not supported") | |
| return pil_images | |
| def postprocess( | |
| self, | |
| image: torch.Tensor, | |
| output_type: str = "pil", | |
| do_denormalize: Optional[List[bool]] = None, | |
| ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]: | |
| """ | |
| Postprocess the image output from tensor to `output_type`. | |
| Args: | |
| image (`torch.Tensor`): | |
| The image input, should be a pytorch tensor with shape `B x C x H x W`. | |
| output_type (`str`, *optional*, defaults to `pil`): | |
| The output type of the image, can be one of `pil`, `np`, `pt`, `latent`. | |
| do_denormalize (`List[bool]`, *optional*, defaults to `None`): | |
| Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the | |
| `VaeImageProcessor` config. | |
| Returns: | |
| `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`: | |
| The postprocessed image. | |
| """ | |
| if not isinstance(image, torch.Tensor): | |
| raise ValueError( | |
| f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor" | |
| ) | |
| if output_type not in ["latent", "pt", "np", "pil"]: | |
| deprecation_message = ( | |
| f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: " | |
| "`pil`, `np`, `pt`, `latent`" | |
| ) | |
| deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False) | |
| output_type = "np" | |
| image = self._denormalize_conditionally(image, do_denormalize) | |
| image = self.pt_to_numpy(image) | |
| if output_type == "np": | |
| if image.shape[-1] == 6: | |
| image_depth = np.stack([self.rgblike_to_depthmap(im[:, :, 3:]) for im in image], axis=0) | |
| else: | |
| image_depth = image[:, :, :, 3:] | |
| return image[:, :, :, :3], image_depth | |
| if output_type == "pil": | |
| return self.numpy_to_pil(image), self.numpy_to_depth(image) | |
| else: | |
| raise Exception(f"This type {output_type} is not supported") | |
| def preprocess( | |
| self, | |
| rgb: Union[torch.Tensor, PIL.Image.Image, np.ndarray], | |
| depth: Union[torch.Tensor, PIL.Image.Image, np.ndarray], | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| target_res: Optional[int] = None, | |
| ) -> torch.Tensor: | |
| r""" | |
| Preprocess the image input. Accepted formats are PIL images, NumPy arrays, or PyTorch tensors. | |
| Args: | |
| rgb (`Union[torch.Tensor, PIL.Image.Image, np.ndarray]`): | |
| The RGB input image, which can be a single image or a batch. | |
| depth (`Union[torch.Tensor, PIL.Image.Image, np.ndarray]`): | |
| The depth input image, which can be a single image or a batch. | |
| height (`Optional[int]`, *optional*, defaults to `None`): | |
| The desired height of the processed image. If `None`, defaults to the height of the input image. | |
| width (`Optional[int]`, *optional*, defaults to `None`): | |
| The desired width of the processed image. If `None`, defaults to the width of the input image. | |
| target_res (`Optional[int]`, *optional*, defaults to `None`): | |
| Target resolution for resizing the images. If specified, overrides height and width. | |
| Returns: | |
| `Tuple[torch.Tensor, torch.Tensor]`: | |
| A tuple containing the processed RGB and depth images as PyTorch tensors. | |
| """ | |
| supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor) | |
| # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image | |
| if self.config.do_convert_grayscale and isinstance(rgb, (torch.Tensor, np.ndarray)) and rgb.ndim == 3: | |
| raise Exception("This is not yet supported") | |
| if isinstance(rgb, supported_formats): | |
| rgb = [rgb] | |
| depth = [depth] | |
| elif not (isinstance(rgb, list) and all(isinstance(i, supported_formats) for i in rgb)): | |
| raise ValueError( | |
| f"Input is in incorrect format: {[type(i) for i in rgb]}. Currently, we only support {', '.join(supported_formats)}" | |
| ) | |
| if isinstance(rgb[0], PIL.Image.Image): | |
| if self.config.do_convert_rgb: | |
| raise Exception("This is not yet supported") | |
| # rgb = [self.convert_to_rgb(i) for i in rgb] | |
| # depth = [self.convert_to_depth(i) for i in depth] #TODO define convert_to_depth | |
| if self.config.do_resize or target_res: | |
| height, width = self.get_default_height_width(rgb[0], height, width) if not target_res else target_res | |
| rgb = [self.resize(i, height, width) for i in rgb] | |
| depth = [self.resize(i, height, width) for i in depth] | |
| rgb = self.pil_to_numpy(rgb) # to np | |
| rgb = self.numpy_to_pt(rgb) # to pt | |
| depth = self.depth_pil_to_numpy(depth) # to np | |
| depth = self.numpy_to_pt(depth) # to pt | |
| elif isinstance(rgb[0], np.ndarray): | |
| rgb = np.concatenate(rgb, axis=0) if rgb[0].ndim == 4 else np.stack(rgb, axis=0) | |
| rgb = self.numpy_to_pt(rgb) | |
| height, width = self.get_default_height_width(rgb, height, width) | |
| if self.config.do_resize: | |
| rgb = self.resize(rgb, height, width) | |
| depth = np.concatenate(depth, axis=0) if rgb[0].ndim == 4 else np.stack(depth, axis=0) | |
| depth = self.numpy_to_pt(depth) | |
| height, width = self.get_default_height_width(depth, height, width) | |
| if self.config.do_resize: | |
| depth = self.resize(depth, height, width) | |
| elif isinstance(rgb[0], torch.Tensor): | |
| raise Exception("This is not yet supported") | |
| # rgb = torch.cat(rgb, axis=0) if rgb[0].ndim == 4 else torch.stack(rgb, axis=0) | |
| # if self.config.do_convert_grayscale and rgb.ndim == 3: | |
| # rgb = rgb.unsqueeze(1) | |
| # channel = rgb.shape[1] | |
| # height, width = self.get_default_height_width(rgb, height, width) | |
| # if self.config.do_resize: | |
| # rgb = self.resize(rgb, height, width) | |
| # depth = torch.cat(depth, axis=0) if depth[0].ndim == 4 else torch.stack(depth, axis=0) | |
| # if self.config.do_convert_grayscale and depth.ndim == 3: | |
| # depth = depth.unsqueeze(1) | |
| # channel = depth.shape[1] | |
| # # don't need any preprocess if the image is latents | |
| # if depth == 4: | |
| # return rgb, depth | |
| # height, width = self.get_default_height_width(depth, height, width) | |
| # if self.config.do_resize: | |
| # depth = self.resize(depth, height, width) | |
| # expected range [0,1], normalize to [-1,1] | |
| do_normalize = self.config.do_normalize | |
| if rgb.min() < 0 and do_normalize: | |
| warnings.warn( | |
| "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] " | |
| f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{rgb.min()},{rgb.max()}]", | |
| FutureWarning, | |
| ) | |
| do_normalize = False | |
| if do_normalize: | |
| rgb = self.normalize(rgb) | |
| depth = self.normalize(depth) | |
| if self.config.do_binarize: | |
| rgb = self.binarize(rgb) | |
| depth = self.binarize(depth) | |
| return rgb, depth | |
| class IPAdapterMaskProcessor(VaeImageProcessor): | |
| """ | |
| Image processor for IP Adapter image masks. | |
| Args: | |
| do_resize (`bool`, *optional*, defaults to `True`): | |
| Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. | |
| vae_scale_factor (`int`, *optional*, defaults to `8`): | |
| VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. | |
| resample (`str`, *optional*, defaults to `lanczos`): | |
| Resampling filter to use when resizing the image. | |
| do_normalize (`bool`, *optional*, defaults to `False`): | |
| Whether to normalize the image to [-1,1]. | |
| do_binarize (`bool`, *optional*, defaults to `True`): | |
| Whether to binarize the image to 0/1. | |
| do_convert_grayscale (`bool`, *optional*, defaults to be `True`): | |
| Whether to convert the images to grayscale format. | |
| """ | |
| config_name = CONFIG_NAME | |
| def __init__( | |
| self, | |
| do_resize: bool = True, | |
| vae_scale_factor: int = 8, | |
| resample: str = "lanczos", | |
| do_normalize: bool = False, | |
| do_binarize: bool = True, | |
| do_convert_grayscale: bool = True, | |
| ): | |
| super().__init__( | |
| do_resize=do_resize, | |
| vae_scale_factor=vae_scale_factor, | |
| resample=resample, | |
| do_normalize=do_normalize, | |
| do_binarize=do_binarize, | |
| do_convert_grayscale=do_convert_grayscale, | |
| ) | |
| def downsample(mask: torch.Tensor, batch_size: int, num_queries: int, value_embed_dim: int): | |
| """ | |
| Downsamples the provided mask tensor to match the expected dimensions for scaled dot-product attention. If the | |
| aspect ratio of the mask does not match the aspect ratio of the output image, a warning is issued. | |
| Args: | |
| mask (`torch.Tensor`): | |
| The input mask tensor generated with `IPAdapterMaskProcessor.preprocess()`. | |
| batch_size (`int`): | |
| The batch size. | |
| num_queries (`int`): | |
| The number of queries. | |
| value_embed_dim (`int`): | |
| The dimensionality of the value embeddings. | |
| Returns: | |
| `torch.Tensor`: | |
| The downsampled mask tensor. | |
| """ | |
| o_h = mask.shape[1] | |
| o_w = mask.shape[2] | |
| ratio = o_w / o_h | |
| mask_h = int(math.sqrt(num_queries / ratio)) | |
| mask_h = int(mask_h) + int((num_queries % int(mask_h)) != 0) | |
| mask_w = num_queries // mask_h | |
| mask_downsample = F.interpolate(mask.unsqueeze(0), size=(mask_h, mask_w), mode="bicubic").squeeze(0) | |
| # Repeat batch_size times | |
| if mask_downsample.shape[0] < batch_size: | |
| mask_downsample = mask_downsample.repeat(batch_size, 1, 1) | |
| mask_downsample = mask_downsample.view(mask_downsample.shape[0], -1) | |
| downsampled_area = mask_h * mask_w | |
| # If the output image and the mask do not have the same aspect ratio, tensor shapes will not match | |
| # Pad tensor if downsampled_mask.shape[1] is smaller than num_queries | |
| if downsampled_area < num_queries: | |
| warnings.warn( | |
| "The aspect ratio of the mask does not match the aspect ratio of the output image. " | |
| "Please update your masks or adjust the output size for optimal performance.", | |
| UserWarning, | |
| ) | |
| mask_downsample = F.pad(mask_downsample, (0, num_queries - mask_downsample.shape[1]), value=0.0) | |
| # Discard last embeddings if downsampled_mask.shape[1] is bigger than num_queries | |
| if downsampled_area > num_queries: | |
| warnings.warn( | |
| "The aspect ratio of the mask does not match the aspect ratio of the output image. " | |
| "Please update your masks or adjust the output size for optimal performance.", | |
| UserWarning, | |
| ) | |
| mask_downsample = mask_downsample[:, :num_queries] | |
| # Repeat last dimension to match SDPA output shape | |
| mask_downsample = mask_downsample.view(mask_downsample.shape[0], mask_downsample.shape[1], 1).repeat( | |
| 1, 1, value_embed_dim | |
| ) | |
| return mask_downsample | |
| class PixArtImageProcessor(VaeImageProcessor): | |
| """ | |
| Image processor for PixArt image resize and crop. | |
| Args: | |
| do_resize (`bool`, *optional*, defaults to `True`): | |
| Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept | |
| `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method. | |
| vae_scale_factor (`int`, *optional*, defaults to `8`): | |
| VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. | |
| resample (`str`, *optional*, defaults to `lanczos`): | |
| Resampling filter to use when resizing the image. | |
| do_normalize (`bool`, *optional*, defaults to `True`): | |
| Whether to normalize the image to [-1,1]. | |
| do_binarize (`bool`, *optional*, defaults to `False`): | |
| Whether to binarize the image to 0/1. | |
| do_convert_rgb (`bool`, *optional*, defaults to be `False`): | |
| Whether to convert the images to RGB format. | |
| do_convert_grayscale (`bool`, *optional*, defaults to be `False`): | |
| Whether to convert the images to grayscale format. | |
| """ | |
| def __init__( | |
| self, | |
| do_resize: bool = True, | |
| vae_scale_factor: int = 8, | |
| resample: str = "lanczos", | |
| do_normalize: bool = True, | |
| do_binarize: bool = False, | |
| do_convert_grayscale: bool = False, | |
| ): | |
| super().__init__( | |
| do_resize=do_resize, | |
| vae_scale_factor=vae_scale_factor, | |
| resample=resample, | |
| do_normalize=do_normalize, | |
| do_binarize=do_binarize, | |
| do_convert_grayscale=do_convert_grayscale, | |
| ) | |
| def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]: | |
| r""" | |
| Returns the binned height and width based on the aspect ratio. | |
| Args: | |
| height (`int`): The height of the image. | |
| width (`int`): The width of the image. | |
| ratios (`dict`): A dictionary where keys are aspect ratios and values are tuples of (height, width). | |
| Returns: | |
| `Tuple[int, int]`: The closest binned height and width. | |
| """ | |
| ar = float(height / width) | |
| closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar)) | |
| default_hw = ratios[closest_ratio] | |
| return int(default_hw[0]), int(default_hw[1]) | |
| def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor: | |
| r""" | |
| Resizes and crops a tensor of images to the specified dimensions. | |
| Args: | |
| samples (`torch.Tensor`): | |
| A tensor of shape (N, C, H, W) where N is the batch size, C is the number of channels, H is the height, | |
| and W is the width. | |
| new_width (`int`): The desired width of the output images. | |
| new_height (`int`): The desired height of the output images. | |
| Returns: | |
| `torch.Tensor`: A tensor containing the resized and cropped images. | |
| """ | |
| orig_height, orig_width = samples.shape[2], samples.shape[3] | |
| # Check if resizing is needed | |
| if orig_height != new_height or orig_width != new_width: | |
| ratio = max(new_height / orig_height, new_width / orig_width) | |
| resized_width = int(orig_width * ratio) | |
| resized_height = int(orig_height * ratio) | |
| # Resize | |
| samples = F.interpolate( | |
| samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False | |
| ) | |
| # Center Crop | |
| start_x = (resized_width - new_width) // 2 | |
| end_x = start_x + new_width | |
| start_y = (resized_height - new_height) // 2 | |
| end_y = start_y + new_height | |
| samples = samples[:, :, start_y:end_y, start_x:end_x] | |
| return samples | |