Eduardo Guerra
commited on
Commit
·
8d57271
1
Parent(s):
eed0f02
feat: Final agent submission
Browse files- .gitignore +2 -0
- app.py +68 -37
- execute_script.py +21 -0
- requirements.txt +16 -2
- setup.py +19 -0
- src/agent.py +144 -53
- src/final_answer.py +212 -0
- src/tools.py +613 -0
- src/tools/__init__.py +0 -0
- src/tools/image_to_text.py +0 -0
- src/tools/web_scrapper.py +0 -23
- tests/test_tools.py +155 -0
.gitignore
CHANGED
|
@@ -1,2 +1,4 @@
|
|
| 1 |
.env
|
| 2 |
*__pycache__*
|
|
|
|
|
|
|
|
|
| 1 |
.env
|
| 2 |
*__pycache__*
|
| 3 |
+
*.DS_Store
|
| 4 |
+
*egg-info*
|
app.py
CHANGED
|
@@ -4,6 +4,8 @@ import logging
|
|
| 4 |
import os
|
| 5 |
import sys
|
| 6 |
import traceback
|
|
|
|
|
|
|
| 7 |
|
| 8 |
import gradio as gr
|
| 9 |
import pandas as pd
|
|
@@ -15,9 +17,6 @@ from src.agent import BasicAgent
|
|
| 15 |
# Load environment variables from .env file
|
| 16 |
load_dotenv()
|
| 17 |
|
| 18 |
-
# Set OpenAI API key from environment variable
|
| 19 |
-
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
| 20 |
-
|
| 21 |
|
| 22 |
# Configure logging
|
| 23 |
logging.basicConfig(
|
|
@@ -29,7 +28,6 @@ logger = logging.getLogger(__name__)
|
|
| 29 |
|
| 30 |
# (Keep Constants as is)
|
| 31 |
# --- Constants ---
|
| 32 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 33 |
|
| 34 |
|
| 35 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
@@ -50,7 +48,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 50 |
logger.warning("User not logged in.")
|
| 51 |
return "Please Login to Hugging Face with the button.", None
|
| 52 |
|
| 53 |
-
api_url = DEFAULT_API_URL
|
| 54 |
questions_url = f"{api_url}/questions"
|
| 55 |
submit_url = f"{api_url}/submit"
|
| 56 |
|
|
@@ -112,8 +110,26 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 112 |
logger.info(f"Running agent on {len(questions_data)} questions...")
|
| 113 |
|
| 114 |
# Limit the number of questions to process to avoid timeouts
|
| 115 |
-
max_questions =
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
logger.info(
|
| 118 |
f"Processing {len(questions_to_process)} out of {len(questions_data)} questions"
|
| 119 |
)
|
|
@@ -131,37 +147,52 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 131 |
|
| 132 |
# Use concurrent.futures for thread-safe timeout
|
| 133 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
| 134 |
-
|
| 135 |
try:
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
{
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
except Exception as e:
|
| 166 |
logger.error(
|
| 167 |
f"Error running agent on task {task_id}: {e}",
|
|
|
|
| 4 |
import os
|
| 5 |
import sys
|
| 6 |
import traceback
|
| 7 |
+
import tempfile
|
| 8 |
+
import json
|
| 9 |
|
| 10 |
import gradio as gr
|
| 11 |
import pandas as pd
|
|
|
|
| 17 |
# Load environment variables from .env file
|
| 18 |
load_dotenv()
|
| 19 |
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# Configure logging
|
| 22 |
logging.basicConfig(
|
|
|
|
| 28 |
|
| 29 |
# (Keep Constants as is)
|
| 30 |
# --- Constants ---
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
|
|
| 48 |
logger.warning("User not logged in.")
|
| 49 |
return "Please Login to Hugging Face with the button.", None
|
| 50 |
|
| 51 |
+
api_url = os.getenv("DEFAULT_API_URL")
|
| 52 |
questions_url = f"{api_url}/questions"
|
| 53 |
submit_url = f"{api_url}/submit"
|
| 54 |
|
|
|
|
| 110 |
logger.info(f"Running agent on {len(questions_data)} questions...")
|
| 111 |
|
| 112 |
# Limit the number of questions to process to avoid timeouts
|
| 113 |
+
max_questions = 20 # Process only 20 questions at a time
|
| 114 |
+
|
| 115 |
+
tasks_to_process = [
|
| 116 |
+
# "99c9cc74-fdc8-46c6-8f8d-3ce2d3bfeea3",
|
| 117 |
+
# "1f975693-876d-457b-a649-393859e79bf3",
|
| 118 |
+
# "840bfca7-4f7b-481a-8794-c560c340185d",
|
| 119 |
+
# "7bd855d8-463d-4ed5-93ca-5fe35145f733",
|
| 120 |
+
]
|
| 121 |
+
|
| 122 |
+
# questions_to_process = questions_data[:max_questions]
|
| 123 |
+
|
| 124 |
+
if tasks_to_process:
|
| 125 |
+
questions_to_process = [
|
| 126 |
+
x
|
| 127 |
+
for x in questions_data
|
| 128 |
+
if x.get("task_id") in tasks_to_process
|
| 129 |
+
]
|
| 130 |
+
else:
|
| 131 |
+
questions_to_process = questions_data[:max_questions]
|
| 132 |
+
|
| 133 |
logger.info(
|
| 134 |
f"Processing {len(questions_to_process)} out of {len(questions_data)} questions"
|
| 135 |
)
|
|
|
|
| 147 |
|
| 148 |
# Use concurrent.futures for thread-safe timeout
|
| 149 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
| 150 |
+
|
| 151 |
try:
|
| 152 |
+
future = executor.submit(agent, question_text, task_id)
|
| 153 |
+
try:
|
| 154 |
+
submitted_answer = future.result(
|
| 155 |
+
timeout=180
|
| 156 |
+
) # 60 second timeout
|
| 157 |
+
logger.info(
|
| 158 |
+
f"Answer for task {task_id}: {submitted_answer}"
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
answers_payload.append(
|
| 162 |
+
{
|
| 163 |
+
"task_id": task_id,
|
| 164 |
+
"submitted_answer": submitted_answer,
|
| 165 |
+
}
|
| 166 |
+
)
|
| 167 |
+
results_log.append(
|
| 168 |
+
{
|
| 169 |
+
"Task ID": task_id,
|
| 170 |
+
"Question": question_text,
|
| 171 |
+
"Submitted Answer": submitted_answer,
|
| 172 |
+
}
|
| 173 |
+
)
|
| 174 |
+
except concurrent.futures.TimeoutError:
|
| 175 |
+
logger.error(f"Timeout processing task {task_id}")
|
| 176 |
+
results_log.append(
|
| 177 |
+
{
|
| 178 |
+
"Task ID": task_id,
|
| 179 |
+
"Question": question_text,
|
| 180 |
+
"Submitted Answer": "TIMEOUT ERROR: Question processing timed out after 60 seconds",
|
| 181 |
+
}
|
| 182 |
+
)
|
| 183 |
+
finally:
|
| 184 |
+
# Clean up temporary directory after processing
|
| 185 |
+
try:
|
| 186 |
+
import shutil
|
| 187 |
+
|
| 188 |
+
shutil.rmtree(temp_dir)
|
| 189 |
+
logger.info(
|
| 190 |
+
f"Cleaned up temporary directory for task {task_id}"
|
| 191 |
+
)
|
| 192 |
+
except Exception as e:
|
| 193 |
+
logger.error(
|
| 194 |
+
f"Error cleaning up temporary directory for task {task_id}: {e}"
|
| 195 |
+
)
|
| 196 |
except Exception as e:
|
| 197 |
logger.error(
|
| 198 |
f"Error running agent on task {task_id}: {e}",
|
execute_script.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from google import genai
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
|
| 6 |
+
load_dotenv()
|
| 7 |
+
|
| 8 |
+
if __name__ == "__main__":
|
| 9 |
+
try:
|
| 10 |
+
client = genai.Client(api_key=os.getenv("GEMINI_KEY"))
|
| 11 |
+
models = client.models.list()
|
| 12 |
+
|
| 13 |
+
result = "Available Gemini Models:\n\n"
|
| 14 |
+
for model in models:
|
| 15 |
+
result += f"Model: {model.name}\n"
|
| 16 |
+
result += f"Description: {model.description}\n"
|
| 17 |
+
result += "-" * 50 + "\n"
|
| 18 |
+
|
| 19 |
+
print(result)
|
| 20 |
+
except Exception as e:
|
| 21 |
+
print(f"Error listing models: {str(e)}")
|
requirements.txt
CHANGED
|
@@ -1,16 +1,30 @@
|
|
| 1 |
beautifulsoup4==4.13.4
|
| 2 |
duckduckgo-search==8.0.1
|
|
|
|
|
|
|
|
|
|
| 3 |
gradio
|
|
|
|
|
|
|
|
|
|
| 4 |
langchain-core==0.3.56
|
| 5 |
langchain-community==0.3.23
|
| 6 |
-
langchain-
|
| 7 |
-
langchain-
|
|
|
|
| 8 |
langgraph==0.3.34
|
| 9 |
lxml==5.4.0
|
| 10 |
nest-asyncio==1.6.0
|
|
|
|
| 11 |
playwright==1.51.0
|
|
|
|
|
|
|
| 12 |
python-dotenv==1.1.0
|
| 13 |
requests
|
|
|
|
| 14 |
sentencepiece==0.2.0
|
| 15 |
torch==2.7.0
|
| 16 |
transformers==4.51.3
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
beautifulsoup4==4.13.4
|
| 2 |
duckduckgo-search==8.0.1
|
| 3 |
+
google-ai-generativelanguage==0.6.15
|
| 4 |
+
google-genai==1.13.0
|
| 5 |
+
google-generativeai==0.8.5
|
| 6 |
gradio
|
| 7 |
+
imageio
|
| 8 |
+
imageio[ffmpeg]
|
| 9 |
+
imageio[pyav]
|
| 10 |
langchain-core==0.3.56
|
| 11 |
langchain-community==0.3.23
|
| 12 |
+
langchain-experimental==0.3.4
|
| 13 |
+
langchain-google-genai==2.0.10
|
| 14 |
+
langchain-google-community==2.0.7
|
| 15 |
langgraph==0.3.34
|
| 16 |
lxml==5.4.0
|
| 17 |
nest-asyncio==1.6.0
|
| 18 |
+
Pillow
|
| 19 |
playwright==1.51.0
|
| 20 |
+
pytesseract
|
| 21 |
+
pytest==8.3.5
|
| 22 |
python-dotenv==1.1.0
|
| 23 |
requests
|
| 24 |
+
rizaio==0.11.0
|
| 25 |
sentencepiece==0.2.0
|
| 26 |
torch==2.7.0
|
| 27 |
transformers==4.51.3
|
| 28 |
+
typing-extensions==4.13.2
|
| 29 |
+
youtube-transcript-api==1.0.3
|
| 30 |
+
yt-dlp==2025.4.30
|
setup.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from setuptools import setup, find_packages
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def read_requirements():
|
| 5 |
+
with open("requirements.txt") as f:
|
| 6 |
+
return [
|
| 7 |
+
line.strip()
|
| 8 |
+
for line in f
|
| 9 |
+
if line.strip() and not line.startswith("#")
|
| 10 |
+
]
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
setup(
|
| 14 |
+
name="src",
|
| 15 |
+
version="0.1",
|
| 16 |
+
packages=find_packages(),
|
| 17 |
+
install_requires=read_requirements(),
|
| 18 |
+
python_requires=">=3.8",
|
| 19 |
+
)
|
src/agent.py
CHANGED
|
@@ -1,21 +1,31 @@
|
|
| 1 |
import logging
|
| 2 |
import os
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
import
|
| 6 |
-
from
|
| 7 |
-
from langchain_community.agent_toolkits import PlayWrightBrowserToolkit
|
| 8 |
-
from langchain_community.tools import DuckDuckGoSearchResults
|
| 9 |
-
from langchain_community.tools.playwright.utils import (
|
| 10 |
-
create_async_playwright_browser, # A synchronous browser is available, though it isn't compatible with jupyter.\n", },
|
| 11 |
-
)
|
| 12 |
-
from langchain_core.messages import AIMessage, HumanMessage
|
| 13 |
from langchain_core.prompts import ChatPromptTemplate
|
| 14 |
-
from
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
from src.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
nest_asyncio.apply()
|
| 19 |
logger = logging.getLogger(__name__)
|
| 20 |
|
| 21 |
|
|
@@ -24,11 +34,13 @@ class BasicAgent:
|
|
| 24 |
try:
|
| 25 |
logger.info("Initializing BasicAgent")
|
| 26 |
|
|
|
|
| 27 |
prompt = ChatPromptTemplate.from_messages(
|
| 28 |
[
|
| 29 |
(
|
| 30 |
"system",
|
| 31 |
-
"You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise
|
|
|
|
| 32 |
),
|
| 33 |
("placeholder", "{chat_history}"),
|
| 34 |
("human", "{input}"),
|
|
@@ -37,61 +49,140 @@ class BasicAgent:
|
|
| 37 |
)
|
| 38 |
logger.info("Created prompt template")
|
| 39 |
|
| 40 |
-
#
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
llm = ChatOpenAI(
|
| 47 |
-
model="gpt-3.5-turbo",
|
| 48 |
-
openai_api_key=openai_api_key,
|
| 49 |
-
temperature=0.7,
|
| 50 |
-
max_tokens=1024,
|
| 51 |
)
|
| 52 |
-
logger.info("Created
|
| 53 |
-
|
| 54 |
-
# async_browser = create_async_playwright_browser()
|
| 55 |
-
# toolkit = PlayWrightBrowserToolkit.from_browser(
|
| 56 |
-
# async_browser=async_browser
|
| 57 |
-
# )
|
| 58 |
-
# tools = toolkit.get_tools()
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
|
|
|
| 63 |
agent = create_tool_calling_agent(llm, tools, prompt)
|
| 64 |
logger.info("Created tool calling agent")
|
| 65 |
|
|
|
|
| 66 |
self.agent_executor = AgentExecutor(
|
| 67 |
-
agent=agent,
|
|
|
|
|
|
|
|
|
|
| 68 |
)
|
| 69 |
logger.info("Created agent executor")
|
| 70 |
|
|
|
|
|
|
|
|
|
|
| 71 |
except Exception as e:
|
| 72 |
-
logger.error(
|
| 73 |
raise
|
| 74 |
|
| 75 |
-
def __call__(self, question: str) -> str:
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
retries = 3
|
| 80 |
-
while retries > 0:
|
| 81 |
try:
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
except Exception as e:
|
| 88 |
logger.error(
|
| 89 |
-
f"Error
|
| 90 |
)
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
logger.error(f"Error processing question: {e}", exc_info=True)
|
| 97 |
-
raise
|
|
|
|
| 1 |
import logging
|
| 2 |
import os
|
| 3 |
+
from typing import Optional, Dict
|
| 4 |
+
import tempfile
|
| 5 |
|
| 6 |
+
from langchain.agents import AgentExecutor, create_tool_calling_agent
|
| 7 |
+
from langchain_google_community import GoogleSearchResults
|
| 8 |
+
from langchain_google_community import GoogleSearchAPIWrapper
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
from langchain_core.prompts import ChatPromptTemplate
|
| 10 |
+
from langchain_core.tools import Tool
|
| 11 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 12 |
+
from langchain_experimental.utilities import PythonREPL
|
| 13 |
|
| 14 |
+
from src.final_answer import create_final_answer_graph, validate_answer
|
| 15 |
+
from src.tools import (
|
| 16 |
+
analyze_csv_file,
|
| 17 |
+
analyze_excel_file,
|
| 18 |
+
download_file_from_url,
|
| 19 |
+
extract_text_from_image,
|
| 20 |
+
read_file,
|
| 21 |
+
review_youtube_video,
|
| 22 |
+
transcribe_audio,
|
| 23 |
+
transcribe_youtube,
|
| 24 |
+
use_vision_model,
|
| 25 |
+
video_frames_to_images,
|
| 26 |
+
website_scrape,
|
| 27 |
+
)
|
| 28 |
|
|
|
|
| 29 |
logger = logging.getLogger(__name__)
|
| 30 |
|
| 31 |
|
|
|
|
| 34 |
try:
|
| 35 |
logger.info("Initializing BasicAgent")
|
| 36 |
|
| 37 |
+
# Create the prompt template
|
| 38 |
prompt = ChatPromptTemplate.from_messages(
|
| 39 |
[
|
| 40 |
(
|
| 41 |
"system",
|
| 42 |
+
"""You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
| 43 |
+
""",
|
| 44 |
),
|
| 45 |
("placeholder", "{chat_history}"),
|
| 46 |
("human", "{input}"),
|
|
|
|
| 49 |
)
|
| 50 |
logger.info("Created prompt template")
|
| 51 |
|
| 52 |
+
# Initialize Gemini model
|
| 53 |
+
logger.info("Creating Gemini model...")
|
| 54 |
+
llm = ChatGoogleGenerativeAI(
|
| 55 |
+
model="models/gemini-2.5-pro-preview-03-25",
|
| 56 |
+
google_api_key=os.getenv("GEMINI_KEY"),
|
| 57 |
+
temperature=0.2,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
)
|
| 59 |
+
logger.info("Created Gemini model successfully")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
# Define available tools
|
| 62 |
+
tools = [
|
| 63 |
+
GoogleSearchResults(
|
| 64 |
+
api_wrapper=GoogleSearchAPIWrapper(
|
| 65 |
+
google_api_key=os.getenv("GOOGLE_SEARCH_API_KEY"),
|
| 66 |
+
google_cse_id=os.getenv("GOOGLE_CSE_ID"),
|
| 67 |
+
k=5, # Number of results to return
|
| 68 |
+
)
|
| 69 |
+
),
|
| 70 |
+
analyze_csv_file,
|
| 71 |
+
analyze_excel_file,
|
| 72 |
+
download_file_from_url,
|
| 73 |
+
extract_text_from_image,
|
| 74 |
+
read_file,
|
| 75 |
+
review_youtube_video,
|
| 76 |
+
transcribe_audio,
|
| 77 |
+
transcribe_youtube,
|
| 78 |
+
use_vision_model,
|
| 79 |
+
video_frames_to_images,
|
| 80 |
+
website_scrape,
|
| 81 |
+
Tool(
|
| 82 |
+
name="python_repl",
|
| 83 |
+
description="A Python shell. Use this to execute python commands. Input # should be a valid python command. If you want to see the output of a value, # you should print it out with `print(...)`.",
|
| 84 |
+
func=PythonREPL().run,
|
| 85 |
+
),
|
| 86 |
+
]
|
| 87 |
+
logger.info("Tools: %s", tools)
|
| 88 |
|
| 89 |
+
# Create the agent
|
| 90 |
agent = create_tool_calling_agent(llm, tools, prompt)
|
| 91 |
logger.info("Created tool calling agent")
|
| 92 |
|
| 93 |
+
# Create the agent executor
|
| 94 |
self.agent_executor = AgentExecutor(
|
| 95 |
+
agent=agent,
|
| 96 |
+
tools=tools,
|
| 97 |
+
return_intermediate_steps=True,
|
| 98 |
+
verbose=True,
|
| 99 |
)
|
| 100 |
logger.info("Created agent executor")
|
| 101 |
|
| 102 |
+
# Create the graph
|
| 103 |
+
self.validation_graph = create_final_answer_graph()
|
| 104 |
+
|
| 105 |
except Exception as e:
|
| 106 |
+
logger.error("Error initializing agent: %s", e, exc_info=True)
|
| 107 |
raise
|
| 108 |
|
| 109 |
+
def __call__(self, question: str, task_id: str) -> str:
|
| 110 |
+
"""Execute the agent with the given question and optional file.
|
| 111 |
+
|
| 112 |
+
Args:
|
| 113 |
+
question (str): The question to answer
|
| 114 |
+
task_id (str): The task ID to fetch the file
|
| 115 |
+
"""
|
| 116 |
+
max_retries = 3
|
| 117 |
+
attempt = 0
|
| 118 |
+
|
| 119 |
+
# Create a temporary directory that will be automatically cleaned up
|
| 120 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 121 |
+
while attempt < max_retries:
|
| 122 |
+
default_api_url = os.getenv("DEFAULT_API_URL")
|
| 123 |
+
file_url = f"{default_api_url}/files/{task_id}"
|
| 124 |
+
|
| 125 |
+
try:
|
| 126 |
+
# Download file to temporary directory
|
| 127 |
+
file = download_file_from_url.invoke(
|
| 128 |
+
{
|
| 129 |
+
"url": file_url,
|
| 130 |
+
"directory": temp_dir,
|
| 131 |
+
}
|
| 132 |
+
)
|
| 133 |
+
except Exception as e:
|
| 134 |
+
logger.error(f"Error downloading file: {e}")
|
| 135 |
+
file = None
|
| 136 |
|
|
|
|
|
|
|
| 137 |
try:
|
| 138 |
+
attempt += 1
|
| 139 |
+
logger.info(f"Attempt {attempt} of {max_retries}")
|
| 140 |
+
|
| 141 |
+
# Prepare input with file information
|
| 142 |
+
if file and file.get("type") != "error":
|
| 143 |
+
input_data = {
|
| 144 |
+
"input": question
|
| 145 |
+
+ f" [File: type={file.get('type', 'None')}, path={file.get('path', 'None')}]",
|
| 146 |
+
}
|
| 147 |
+
else:
|
| 148 |
+
input_data = {
|
| 149 |
+
"input": question,
|
| 150 |
+
}
|
| 151 |
+
|
| 152 |
+
# Run the agent to get the answer
|
| 153 |
+
result = self.agent_executor.invoke(input_data)
|
| 154 |
+
answer = result.get("output", "")
|
| 155 |
+
|
| 156 |
+
logger.info(f"Attempt {attempt} result: {result}")
|
| 157 |
+
|
| 158 |
+
# Run validation
|
| 159 |
+
validation_result = validate_answer(
|
| 160 |
+
self.validation_graph,
|
| 161 |
+
answer,
|
| 162 |
+
[result.get("intermediate_steps", [])],
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
valid_answer = validation_result.get("valid_answer", False)
|
| 166 |
+
final_answer = validation_result.get("final_answer", "")
|
| 167 |
+
|
| 168 |
+
if valid_answer:
|
| 169 |
+
logger.info(f"Valid answer found on attempt {attempt}")
|
| 170 |
+
return final_answer
|
| 171 |
+
|
| 172 |
+
logger.warning(
|
| 173 |
+
f"Validation failed on attempt {attempt}: {final_answer}"
|
| 174 |
+
)
|
| 175 |
+
if attempt >= max_retries:
|
| 176 |
+
raise Exception(
|
| 177 |
+
f"Failed to get valid answer after {max_retries} attempts. Last error: {final_answer}"
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
except Exception as e:
|
| 181 |
logger.error(
|
| 182 |
+
f"Error in attempt {attempt}: {e}", exc_info=True
|
| 183 |
)
|
| 184 |
+
if attempt >= max_retries:
|
| 185 |
+
raise Exception(
|
| 186 |
+
f"Failed after {max_retries} attempts. Last error: {str(e)}"
|
| 187 |
+
)
|
| 188 |
+
continue
|
|
|
|
|
|
src/final_answer.py
ADDED
|
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
from typing import Any, Dict, Optional
|
| 4 |
+
from typing_extensions import TypedDict
|
| 5 |
+
|
| 6 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 7 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 8 |
+
from langgraph.graph import Graph, StateGraph, START, END
|
| 9 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class AgentState(TypedDict):
|
| 13 |
+
"""State for the final answer validation graph."""
|
| 14 |
+
|
| 15 |
+
question: str
|
| 16 |
+
answer: str
|
| 17 |
+
final_answer: str | None
|
| 18 |
+
agent_memory: Any
|
| 19 |
+
valid_answer: bool
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def extract_answer(state: AgentState) -> Dict:
|
| 23 |
+
"""Extract and format the final answer from the state.
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
state: The state of the agent.
|
| 27 |
+
|
| 28 |
+
Returns:
|
| 29 |
+
A dictionary with the formatted final answer.
|
| 30 |
+
"""
|
| 31 |
+
# Extract the final answer from the state
|
| 32 |
+
sep_token = "FINAL ANSWER:"
|
| 33 |
+
raw_answer = state["answer"]
|
| 34 |
+
|
| 35 |
+
# Extract the answer after the separator if it exists
|
| 36 |
+
if sep_token in raw_answer:
|
| 37 |
+
formatted_answer = raw_answer.split(sep_token)[1].strip()
|
| 38 |
+
else:
|
| 39 |
+
formatted_answer = raw_answer.strip()
|
| 40 |
+
|
| 41 |
+
# Remove any brackets from lists
|
| 42 |
+
formatted_answer = formatted_answer.replace("[", "").replace("]", "")
|
| 43 |
+
|
| 44 |
+
# Remove units unless specified
|
| 45 |
+
if not any(
|
| 46 |
+
unit in formatted_answer.lower()
|
| 47 |
+
for unit in ["$", "%", "dollars", "percent"]
|
| 48 |
+
):
|
| 49 |
+
formatted_answer = formatted_answer.replace("$", "").replace("%", "")
|
| 50 |
+
|
| 51 |
+
# Remove commas from numbers
|
| 52 |
+
parts = formatted_answer.split(",")
|
| 53 |
+
formatted_parts = []
|
| 54 |
+
for part in parts:
|
| 55 |
+
part = part.strip()
|
| 56 |
+
if part.replace(".", "").isdigit(): # Check if it's a number
|
| 57 |
+
part = part.replace(",", "")
|
| 58 |
+
formatted_parts.append(part)
|
| 59 |
+
formatted_answer = ", ".join(formatted_parts)
|
| 60 |
+
|
| 61 |
+
return {"final_answer": formatted_answer}
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def reasoning_check(state: AgentState) -> Dict:
|
| 65 |
+
"""
|
| 66 |
+
Node that checks the reasoning of the final answer.
|
| 67 |
+
|
| 68 |
+
Args:
|
| 69 |
+
state: The state of the agent.
|
| 70 |
+
|
| 71 |
+
Returns:
|
| 72 |
+
A dictionary with the reasoning check result.
|
| 73 |
+
"""
|
| 74 |
+
model = ChatGoogleGenerativeAI(
|
| 75 |
+
model="models/gemini-2.0-flash-lite",
|
| 76 |
+
google_api_key=os.getenv("GEMINI_KEY"),
|
| 77 |
+
temperature=0.2,
|
| 78 |
+
)
|
| 79 |
+
prompt = ChatPromptTemplate.from_messages(
|
| 80 |
+
[
|
| 81 |
+
(
|
| 82 |
+
"system",
|
| 83 |
+
"""You are a strict validator of answers. Your job is to check if the reasoning and results are correct.
|
| 84 |
+
You should have >90% confidence that the answer is correct to pass it.
|
| 85 |
+
First list reasons why yes/no, then write your final decision: PASS in caps lock if it is satisfactory, FAIL if it is not.""",
|
| 86 |
+
),
|
| 87 |
+
(
|
| 88 |
+
"human",
|
| 89 |
+
"""
|
| 90 |
+
Here is a user-given task and the agent steps: {agent_memory}
|
| 91 |
+
Now here is the answer that was given: {final_answer}
|
| 92 |
+
Please check that the reasoning process and results are correct: do they correctly answer the given task?
|
| 93 |
+
""",
|
| 94 |
+
),
|
| 95 |
+
]
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
chain = prompt | model | StrOutputParser()
|
| 99 |
+
output = chain.invoke(
|
| 100 |
+
{
|
| 101 |
+
"agent_memory": state["agent_memory"],
|
| 102 |
+
"final_answer": state["final_answer"],
|
| 103 |
+
}
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
print("Reasoning Feedback: ", output)
|
| 107 |
+
if "FAIL" in output:
|
| 108 |
+
return {"valid_answer": False}
|
| 109 |
+
return {"valid_answer": True}
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def formatting_check(state: AgentState) -> Dict:
|
| 113 |
+
"""
|
| 114 |
+
Node that checks the formatting of the final answer.
|
| 115 |
+
|
| 116 |
+
Args:
|
| 117 |
+
state: The state of the agent.
|
| 118 |
+
|
| 119 |
+
Returns:
|
| 120 |
+
A dictionary with the formatting check result.
|
| 121 |
+
"""
|
| 122 |
+
model = ChatGoogleGenerativeAI(
|
| 123 |
+
model="models/gemini-2.0-flash-lite",
|
| 124 |
+
google_api_key=os.getenv("GEMINI_KEY"),
|
| 125 |
+
temperature=0.2,
|
| 126 |
+
)
|
| 127 |
+
prompt = ChatPromptTemplate.from_messages(
|
| 128 |
+
[
|
| 129 |
+
(
|
| 130 |
+
"system",
|
| 131 |
+
"""You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
| 132 |
+
""",
|
| 133 |
+
),
|
| 134 |
+
(
|
| 135 |
+
"human",
|
| 136 |
+
"""
|
| 137 |
+
Here is a user-given task and the agent steps: {agent_memory}
|
| 138 |
+
Now here is the FINAL ANSWER that was given: {final_answer}
|
| 139 |
+
Ensure the FINAL ANSWER is in the right format as asked for by the task.
|
| 140 |
+
""",
|
| 141 |
+
),
|
| 142 |
+
]
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
chain = prompt | model | StrOutputParser()
|
| 146 |
+
output = chain.invoke(
|
| 147 |
+
{
|
| 148 |
+
"agent_memory": state["agent_memory"],
|
| 149 |
+
"final_answer": state["final_answer"],
|
| 150 |
+
}
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
print("Formatting Feedback: ", output)
|
| 154 |
+
if "FAIL" in output:
|
| 155 |
+
return {"valid_answer": False}
|
| 156 |
+
return {"valid_answer": True}
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def create_final_answer_graph() -> Graph:
|
| 160 |
+
"""Create a graph that validates the final answer.
|
| 161 |
+
|
| 162 |
+
Returns:
|
| 163 |
+
A graph that validates the final answer.
|
| 164 |
+
"""
|
| 165 |
+
# Create the graph
|
| 166 |
+
workflow = StateGraph(AgentState)
|
| 167 |
+
|
| 168 |
+
# Add nodes
|
| 169 |
+
workflow.add_node("extract_answer", extract_answer)
|
| 170 |
+
workflow.add_node("reasoning_check", reasoning_check)
|
| 171 |
+
workflow.add_node("formatting_check", formatting_check)
|
| 172 |
+
|
| 173 |
+
# Add edges
|
| 174 |
+
workflow.add_edge(START, "extract_answer")
|
| 175 |
+
workflow.add_edge("extract_answer", "reasoning_check")
|
| 176 |
+
workflow.add_edge("reasoning_check", "formatting_check")
|
| 177 |
+
workflow.add_edge("formatting_check", END)
|
| 178 |
+
|
| 179 |
+
# Compile the graph
|
| 180 |
+
return workflow.compile()
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
def validate_answer(graph: Graph, answer: str, agent_memory: Any) -> Dict:
|
| 184 |
+
"""Validate the answer using the LangGraph workflow.
|
| 185 |
+
|
| 186 |
+
Args:
|
| 187 |
+
graph: The validation graph.
|
| 188 |
+
answer: The answer to validate.
|
| 189 |
+
agent_memory: The agent's memory.
|
| 190 |
+
|
| 191 |
+
Returns:
|
| 192 |
+
A dictionary with validation results.
|
| 193 |
+
"""
|
| 194 |
+
try:
|
| 195 |
+
# Initialize state
|
| 196 |
+
initial_state = {
|
| 197 |
+
"answer": answer,
|
| 198 |
+
"final_answer": None,
|
| 199 |
+
"agent_memory": agent_memory,
|
| 200 |
+
"valid_answer": False,
|
| 201 |
+
}
|
| 202 |
+
|
| 203 |
+
# Run the graph
|
| 204 |
+
result = graph.invoke(initial_state)
|
| 205 |
+
|
| 206 |
+
return {
|
| 207 |
+
"valid_answer": result.get("valid_answer", False),
|
| 208 |
+
"final_answer": result.get("final_answer", None),
|
| 209 |
+
}
|
| 210 |
+
except Exception as e:
|
| 211 |
+
print(f"Validation failed: {e}")
|
| 212 |
+
return {"valid_answer": False, "final_answer": None}
|
src/tools.py
ADDED
|
@@ -0,0 +1,613 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
import shutil
|
| 3 |
+
import os
|
| 4 |
+
import tempfile
|
| 5 |
+
import uuid
|
| 6 |
+
from typing import List, Optional, Dict, Union
|
| 7 |
+
import re
|
| 8 |
+
import time
|
| 9 |
+
from datetime import datetime, timedelta
|
| 10 |
+
from bs4 import BeautifulSoup
|
| 11 |
+
from playwright.sync_api import sync_playwright
|
| 12 |
+
|
| 13 |
+
import imageio
|
| 14 |
+
import pandas as pd
|
| 15 |
+
import pytesseract
|
| 16 |
+
import requests
|
| 17 |
+
import yt_dlp
|
| 18 |
+
from dotenv import load_dotenv
|
| 19 |
+
from google import genai
|
| 20 |
+
from google.genai import types
|
| 21 |
+
from langchain_core.tools import tool
|
| 22 |
+
from PIL import Image
|
| 23 |
+
from youtube_transcript_api import YouTubeTranscriptApi
|
| 24 |
+
|
| 25 |
+
load_dotenv()
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# Vision Model Tool
|
| 29 |
+
@tool
|
| 30 |
+
def use_vision_model(
|
| 31 |
+
question: str, image_paths: List[str], mime_type: str
|
| 32 |
+
) -> str:
|
| 33 |
+
"""Use a Vision Model to answer a question about a set of images.
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
question (str): The question you are asking about the images.
|
| 37 |
+
image_paths (List[str]): The paths to the images to use for the question.
|
| 38 |
+
mime_type (str): The mime type of the image.
|
| 39 |
+
|
| 40 |
+
Returns:
|
| 41 |
+
str: The answer to the question
|
| 42 |
+
"""
|
| 43 |
+
try:
|
| 44 |
+
client = genai.Client(api_key=os.getenv("GEMINI_KEY"))
|
| 45 |
+
model = "models/gemini-2.0-flash-001"
|
| 46 |
+
|
| 47 |
+
# Prepare the content parts
|
| 48 |
+
parts = []
|
| 49 |
+
for image_path in image_paths:
|
| 50 |
+
with open(image_path, "rb") as f:
|
| 51 |
+
image_bytes = f.read()
|
| 52 |
+
|
| 53 |
+
response = []
|
| 54 |
+
|
| 55 |
+
for chunk in client.models.generate_content_stream(
|
| 56 |
+
model=model,
|
| 57 |
+
contents=[
|
| 58 |
+
question,
|
| 59 |
+
types.Part.from_bytes(data=image_bytes, mime_type=mime_type),
|
| 60 |
+
],
|
| 61 |
+
):
|
| 62 |
+
response.append(chunk.text)
|
| 63 |
+
|
| 64 |
+
return " ".join(response)
|
| 65 |
+
|
| 66 |
+
except Exception as e:
|
| 67 |
+
return f"Error using vision model: {str(e)}"
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
# YouTube Video Review Tool
|
| 71 |
+
@tool
|
| 72 |
+
def review_youtube_video(url: str, question: str) -> str:
|
| 73 |
+
"""Reviews a YouTube video and answers a specific question about that video.
|
| 74 |
+
|
| 75 |
+
Args:
|
| 76 |
+
url (str): the URL to the YouTube video.
|
| 77 |
+
question (str): The question you are asking about the video
|
| 78 |
+
|
| 79 |
+
Returns:
|
| 80 |
+
str: The answer to the question
|
| 81 |
+
"""
|
| 82 |
+
try:
|
| 83 |
+
client = genai.Client(api_key=os.getenv("GEMINI_KEY"))
|
| 84 |
+
model = "models/gemini-1.5-flash-8b"
|
| 85 |
+
|
| 86 |
+
response = client.models.generate_content(
|
| 87 |
+
model=model,
|
| 88 |
+
contents=types.Content(
|
| 89 |
+
parts=[
|
| 90 |
+
types.Part(file_data=types.FileData(file_uri=url)),
|
| 91 |
+
types.Part(text=question),
|
| 92 |
+
]
|
| 93 |
+
),
|
| 94 |
+
)
|
| 95 |
+
return response.text
|
| 96 |
+
except Exception as e:
|
| 97 |
+
return f"Error asking {model} about video: {str(e)}"
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
# YouTube Frames to Images Tool
|
| 101 |
+
@tool
|
| 102 |
+
def video_frames_to_images(
|
| 103 |
+
url: str,
|
| 104 |
+
folder_name: str,
|
| 105 |
+
sample_interval_seconds: int = 5,
|
| 106 |
+
) -> List[str]:
|
| 107 |
+
"""Extracts frames from a video at specified intervals and saves them as images.
|
| 108 |
+
|
| 109 |
+
Args:
|
| 110 |
+
url (str): the URL to the video.
|
| 111 |
+
folder_name (str): the name of the folder to save the images to.
|
| 112 |
+
sample_interval_seconds (int): the interval between frames to sample.
|
| 113 |
+
|
| 114 |
+
Returns:
|
| 115 |
+
List[str]: A list of paths to the saved image files.
|
| 116 |
+
"""
|
| 117 |
+
# Create a subdirectory for the frames
|
| 118 |
+
frames_dir = os.path.join(folder_name, "frames")
|
| 119 |
+
os.makedirs(frames_dir, exist_ok=True)
|
| 120 |
+
|
| 121 |
+
ydl_opts = {
|
| 122 |
+
"format": "bestvideo[height<=1080]+bestaudio/best[height<=1080]/best",
|
| 123 |
+
"outtmpl": os.path.join(folder_name, "video.%(ext)s"),
|
| 124 |
+
"quiet": True,
|
| 125 |
+
"noplaylist": True,
|
| 126 |
+
"merge_output_format": "mp4",
|
| 127 |
+
"force_ipv4": True,
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
try:
|
| 131 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 132 |
+
info = ydl.extract_info(url, download=True)
|
| 133 |
+
video_path = next(
|
| 134 |
+
(
|
| 135 |
+
os.path.join(folder_name, f)
|
| 136 |
+
for f in os.listdir(folder_name)
|
| 137 |
+
if f.endswith(".mp4")
|
| 138 |
+
),
|
| 139 |
+
None,
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
if not video_path:
|
| 143 |
+
raise RuntimeError("Failed to download video as mp4")
|
| 144 |
+
|
| 145 |
+
reader = imageio.get_reader(video_path)
|
| 146 |
+
metadata = reader.get_meta_data()
|
| 147 |
+
fps = metadata.get("fps")
|
| 148 |
+
|
| 149 |
+
if fps is None:
|
| 150 |
+
reader.close()
|
| 151 |
+
raise RuntimeError(
|
| 152 |
+
"Unable to determine FPS from video metadata"
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
frame_interval = int(fps * sample_interval_seconds)
|
| 156 |
+
image_paths: List[str] = []
|
| 157 |
+
|
| 158 |
+
for idx, frame in enumerate(reader):
|
| 159 |
+
if idx % frame_interval == 0:
|
| 160 |
+
# Save frame as image
|
| 161 |
+
image_path = os.path.join(
|
| 162 |
+
frames_dir, f"frame_{idx:06d}.jpg"
|
| 163 |
+
)
|
| 164 |
+
imageio.imwrite(image_path, frame)
|
| 165 |
+
image_paths.append(image_path)
|
| 166 |
+
|
| 167 |
+
reader.close()
|
| 168 |
+
return image_paths
|
| 169 |
+
|
| 170 |
+
except Exception as e:
|
| 171 |
+
raise RuntimeError(f"Error processing video frames: {str(e)}") from e
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
# File Reading Tool
|
| 175 |
+
@tool
|
| 176 |
+
def read_file(filepath: str) -> str:
|
| 177 |
+
"""Reads the content of a text file.
|
| 178 |
+
|
| 179 |
+
Args:
|
| 180 |
+
filepath (str): the path to the file to read.
|
| 181 |
+
|
| 182 |
+
Returns:
|
| 183 |
+
str: The content of the file.
|
| 184 |
+
"""
|
| 185 |
+
try:
|
| 186 |
+
with open(filepath, "r", encoding="utf-8") as file:
|
| 187 |
+
content = file.read()
|
| 188 |
+
return content
|
| 189 |
+
except FileNotFoundError:
|
| 190 |
+
return f"File not found: {filepath}"
|
| 191 |
+
except IOError as e:
|
| 192 |
+
return f"Error reading file: {str(e)}"
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
# File Download Tool
|
| 196 |
+
@tool
|
| 197 |
+
def download_file_from_url(
|
| 198 |
+
url: str, directory: str
|
| 199 |
+
) -> Dict[str, Union[str, None]]:
|
| 200 |
+
"""Downloads a file from a URL and saves it to a directory.
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
url (str): the URL to download the file from.
|
| 204 |
+
directory (str): the directory to save the file to.
|
| 205 |
+
|
| 206 |
+
Returns:
|
| 207 |
+
Dict[str, Union[str, None]]: A dictionary containing the file type and path.
|
| 208 |
+
"""
|
| 209 |
+
|
| 210 |
+
try:
|
| 211 |
+
response = requests.get(url, stream=True, timeout=10)
|
| 212 |
+
response.raise_for_status()
|
| 213 |
+
|
| 214 |
+
content_type = response.headers.get("content-type", "").lower()
|
| 215 |
+
|
| 216 |
+
# Try to get filename from headers
|
| 217 |
+
filename = None
|
| 218 |
+
cd = response.headers.get("content-disposition", "")
|
| 219 |
+
match = re.search(r"filename\*=UTF-8\'\'(.+)", cd) or re.search(
|
| 220 |
+
r'filename="?([^"]+)"?', cd
|
| 221 |
+
)
|
| 222 |
+
if match:
|
| 223 |
+
filename = match.group(1)
|
| 224 |
+
|
| 225 |
+
# If not in headers, try URL
|
| 226 |
+
if not filename:
|
| 227 |
+
filename = os.path.basename(url.split("?")[0])
|
| 228 |
+
|
| 229 |
+
# Fallback to generated filename
|
| 230 |
+
if not filename:
|
| 231 |
+
extension = {
|
| 232 |
+
"image/jpeg": ".jpg",
|
| 233 |
+
"image/png": ".png",
|
| 234 |
+
"image/gif": ".gif",
|
| 235 |
+
"audio/wav": ".wav",
|
| 236 |
+
"audio/mpeg": ".mp3",
|
| 237 |
+
"video/mp4": ".mp4",
|
| 238 |
+
"text/plain": ".txt",
|
| 239 |
+
"text/csv": ".csv",
|
| 240 |
+
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet": ".xlsx",
|
| 241 |
+
"application/vnd.ms-excel": ".xls",
|
| 242 |
+
"application/octet-stream": ".bin",
|
| 243 |
+
}.get(content_type, ".bin")
|
| 244 |
+
filename = f"downloaded_{uuid.uuid4().hex[:8]}{extension}"
|
| 245 |
+
|
| 246 |
+
os.makedirs(directory, exist_ok=True)
|
| 247 |
+
file_path = os.path.join(directory, filename)
|
| 248 |
+
|
| 249 |
+
with open(file_path, "wb") as f:
|
| 250 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 251 |
+
f.write(chunk)
|
| 252 |
+
|
| 253 |
+
# shutil.copy(file_path, os.getcwd())
|
| 254 |
+
|
| 255 |
+
if os.path.exists(file_path) and os.path.getsize(file_path) > 0:
|
| 256 |
+
return {"type": content_type, "path": file_path}
|
| 257 |
+
else:
|
| 258 |
+
return {
|
| 259 |
+
"type": "error",
|
| 260 |
+
"path": None,
|
| 261 |
+
"error": "Failed to save file",
|
| 262 |
+
}
|
| 263 |
+
|
| 264 |
+
except Exception as e:
|
| 265 |
+
return {
|
| 266 |
+
"type": "error",
|
| 267 |
+
"path": None,
|
| 268 |
+
"error": f"Error downloading file: {str(e)}",
|
| 269 |
+
}
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
# Text Extraction from Image Tool
|
| 273 |
+
@tool
|
| 274 |
+
def extract_text_from_image(image_path: str) -> str:
|
| 275 |
+
"""Extracts text from an image using OCR.
|
| 276 |
+
|
| 277 |
+
Args:
|
| 278 |
+
image_path (str): the path to the image to extract text from.
|
| 279 |
+
|
| 280 |
+
Returns:
|
| 281 |
+
str: The text extracted from the image.
|
| 282 |
+
"""
|
| 283 |
+
try:
|
| 284 |
+
|
| 285 |
+
image = Image.open(image_path)
|
| 286 |
+
text = pytesseract.image_to_string(image)
|
| 287 |
+
return f"Extracted text from image:\n\n{text}"
|
| 288 |
+
except Exception as e:
|
| 289 |
+
return f"Error extracting text from image: {str(e)}"
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
# CSV Analysis Tool
|
| 293 |
+
@tool
|
| 294 |
+
def analyze_csv_file(file_path: str, query: str) -> str:
|
| 295 |
+
"""Analyzes a CSV file and answers questions about its contents using Gemini.
|
| 296 |
+
|
| 297 |
+
Args:
|
| 298 |
+
file_path (str): the path to the CSV file to analyze.
|
| 299 |
+
query (str): the question to answer about the CSV file.
|
| 300 |
+
|
| 301 |
+
Returns:
|
| 302 |
+
str: The result of the analysis.
|
| 303 |
+
"""
|
| 304 |
+
try:
|
| 305 |
+
# Read the CSV file
|
| 306 |
+
df = pd.read_csv(file_path)
|
| 307 |
+
|
| 308 |
+
# Initialize Gemini
|
| 309 |
+
client = genai.Client(api_key=os.getenv("GEMINI_KEY"))
|
| 310 |
+
model = "models/gemini-1.5-flash-8b"
|
| 311 |
+
|
| 312 |
+
# Convert DataFrame to a string representation
|
| 313 |
+
df_str = df.to_string()
|
| 314 |
+
|
| 315 |
+
# Create a prompt for Gemini
|
| 316 |
+
prompt = f"""Analyze this CSV data and provide insights:
|
| 317 |
+
|
| 318 |
+
Dimensions: {len(df)} rows × {len(df.columns)} columns
|
| 319 |
+
|
| 320 |
+
Data:
|
| 321 |
+
{df_str}
|
| 322 |
+
|
| 323 |
+
Please provide:
|
| 324 |
+
1. A summary of the data structure and content
|
| 325 |
+
2. Key patterns and insights
|
| 326 |
+
3. Potential data quality issues
|
| 327 |
+
4. Suggestions for analysis
|
| 328 |
+
|
| 329 |
+
User Query: {query}
|
| 330 |
+
|
| 331 |
+
Please format your response in a clear, structured way with sections and bullet points."""
|
| 332 |
+
|
| 333 |
+
# Get analysis from Gemini
|
| 334 |
+
response = client.models.generate_content(
|
| 335 |
+
model=model,
|
| 336 |
+
contents=types.Content(
|
| 337 |
+
parts=[
|
| 338 |
+
types.Part(text=df_str),
|
| 339 |
+
types.Part(text=prompt),
|
| 340 |
+
]
|
| 341 |
+
),
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n\n"
|
| 345 |
+
result += response.text
|
| 346 |
+
|
| 347 |
+
return result
|
| 348 |
+
except Exception as e:
|
| 349 |
+
return f"Error analyzing CSV file: {str(e)}"
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
# Excel Analysis Tool
|
| 353 |
+
@tool
|
| 354 |
+
def analyze_excel_file(file_path: str, query: str) -> str:
|
| 355 |
+
"""Analyzes an Excel file and answers questions about its contents using Gemini.
|
| 356 |
+
|
| 357 |
+
Args:
|
| 358 |
+
file_path (str): the path to the Excel file to analyze.
|
| 359 |
+
query (str): the question to answer about the Excel file.
|
| 360 |
+
|
| 361 |
+
Returns:
|
| 362 |
+
str: The result of the analysis.
|
| 363 |
+
"""
|
| 364 |
+
try:
|
| 365 |
+
# Read all sheets from the Excel file
|
| 366 |
+
excel_file = pd.ExcelFile(file_path)
|
| 367 |
+
sheet_names = excel_file.sheet_names
|
| 368 |
+
|
| 369 |
+
# Initialize Gemini
|
| 370 |
+
client = genai.Client(api_key=os.getenv("GEMINI_KEY"))
|
| 371 |
+
model = "models/gemini-1.5-flash-8b"
|
| 372 |
+
|
| 373 |
+
result = f"Excel file loaded with {len(sheet_names)} sheets: {', '.join(sheet_names)}\n\n"
|
| 374 |
+
|
| 375 |
+
# Analyze each sheet
|
| 376 |
+
for sheet_name in sheet_names:
|
| 377 |
+
df = pd.read_excel(file_path, sheet_name=sheet_name)
|
| 378 |
+
|
| 379 |
+
# Convert DataFrame to a string representation
|
| 380 |
+
df_str = df.to_string()
|
| 381 |
+
|
| 382 |
+
# Create a prompt for Gemini
|
| 383 |
+
prompt = f"""Analyze this Excel sheet data and provide insights:
|
| 384 |
+
|
| 385 |
+
Sheet Name: {sheet_name}
|
| 386 |
+
Dimensions: {len(df)} rows × {len(df.columns)} columns
|
| 387 |
+
|
| 388 |
+
Data:
|
| 389 |
+
{df_str}
|
| 390 |
+
|
| 391 |
+
Please provide:
|
| 392 |
+
1. A summary of the data structure and content
|
| 393 |
+
2. Key patterns and insights
|
| 394 |
+
3. Potential data quality issues
|
| 395 |
+
4. Suggestions for analysis
|
| 396 |
+
|
| 397 |
+
User Query: {query}
|
| 398 |
+
|
| 399 |
+
Please format your response in a clear, structured way with sections and bullet points."""
|
| 400 |
+
|
| 401 |
+
# Get analysis from Gemini
|
| 402 |
+
response = client.models.generate_content(
|
| 403 |
+
model=model,
|
| 404 |
+
contents=types.Content(
|
| 405 |
+
parts=[types.Part(text=df_str), types.Part(text=prompt)]
|
| 406 |
+
),
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
result += f"=== Sheet: {sheet_name} ===\n"
|
| 410 |
+
result += response.text + "\n"
|
| 411 |
+
result += "=" * 50 + "\n\n"
|
| 412 |
+
|
| 413 |
+
return result
|
| 414 |
+
except Exception as e:
|
| 415 |
+
return f"Error analyzing Excel file: {str(e)}"
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
# Audio Transcription Tool
|
| 419 |
+
@tool
|
| 420 |
+
def transcribe_audio(audio_file_path: str, mime_type: str) -> str:
|
| 421 |
+
"""Transcribes an audio file using Gemini's audio capabilities.
|
| 422 |
+
|
| 423 |
+
Args:
|
| 424 |
+
audio_file_path (str): the path to the audio file to transcribe.
|
| 425 |
+
mime_type (str): the mime type of the audio file.
|
| 426 |
+
|
| 427 |
+
Returns:
|
| 428 |
+
str: The transcript of the audio file.
|
| 429 |
+
"""
|
| 430 |
+
try:
|
| 431 |
+
# Initialize the model
|
| 432 |
+
client = genai.Client(api_key=os.getenv("GEMINI_KEY"))
|
| 433 |
+
model = "models/gemini-1.5-flash-8b"
|
| 434 |
+
|
| 435 |
+
# Read and encode the audio file
|
| 436 |
+
with open(audio_file_path, "rb") as audio_file:
|
| 437 |
+
audio_data = audio_file.read()
|
| 438 |
+
|
| 439 |
+
# Create the content with audio data
|
| 440 |
+
contents = types.Content(
|
| 441 |
+
parts=[
|
| 442 |
+
types.Part.from_bytes(
|
| 443 |
+
data=audio_data,
|
| 444 |
+
mime_type=mime_type,
|
| 445 |
+
),
|
| 446 |
+
types.Part(text="Please transcribe this audio file."),
|
| 447 |
+
]
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
# Generate transcription
|
| 451 |
+
response = client.models.generate_content(
|
| 452 |
+
model=model, contents=contents
|
| 453 |
+
)
|
| 454 |
+
return response.text
|
| 455 |
+
except Exception as e:
|
| 456 |
+
return f"Error transcribing audio: {str(e)}"
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
def _extract_video_id(url: str) -> Optional[str]:
|
| 460 |
+
"""Extract video ID from YouTube URL.
|
| 461 |
+
|
| 462 |
+
Args:
|
| 463 |
+
url (str): the URL to the YouTube video.
|
| 464 |
+
|
| 465 |
+
Returns:
|
| 466 |
+
str: The video ID of the YouTube video.
|
| 467 |
+
"""
|
| 468 |
+
patterns = [
|
| 469 |
+
r"(?:youtube\.com\/watch\?v=|youtube\.com\/embed\/|youtu\.be\/)([^&\n?#]+)",
|
| 470 |
+
r"(?:youtube\.com\/v\/|youtube\.com\/e\/|youtube\.com\/user\/[^\/]+\/|youtube\.com\/[^\/]+\/|youtube\.com\/embed\/|youtu\.be\/)([^&\n?#]+)",
|
| 471 |
+
]
|
| 472 |
+
|
| 473 |
+
for pattern in patterns:
|
| 474 |
+
match = re.search(pattern, url)
|
| 475 |
+
if match:
|
| 476 |
+
return match.group(1)
|
| 477 |
+
return None
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
@tool
|
| 481 |
+
def transcribe_youtube(url: str) -> str:
|
| 482 |
+
"""Transcribes a YouTube video using YouTube Transcript API or Gemini as fallback.
|
| 483 |
+
|
| 484 |
+
Args:
|
| 485 |
+
url (str): the URL to the YouTube video.
|
| 486 |
+
|
| 487 |
+
Returns:
|
| 488 |
+
str: The transcript of the YouTube video.
|
| 489 |
+
"""
|
| 490 |
+
try:
|
| 491 |
+
# First try using YouTube Transcript API
|
| 492 |
+
video_id = _extract_video_id(url)
|
| 493 |
+
if not video_id:
|
| 494 |
+
raise ValueError(f"Invalid YouTube URL: {url}")
|
| 495 |
+
|
| 496 |
+
try:
|
| 497 |
+
# Try to get transcript in English
|
| 498 |
+
transcript_chunks = YouTubeTranscriptApi.get_transcript(
|
| 499 |
+
video_id, languages=["en"]
|
| 500 |
+
)
|
| 501 |
+
# Combine all chunks into a single transcript with timestamps
|
| 502 |
+
transcript = ""
|
| 503 |
+
for chunk in transcript_chunks:
|
| 504 |
+
timestamp = str(timedelta(seconds=int(chunk["start"])))
|
| 505 |
+
transcript += f"[{timestamp}] {chunk['text']}\n"
|
| 506 |
+
return transcript
|
| 507 |
+
|
| 508 |
+
except Exception as transcript_error:
|
| 509 |
+
print(
|
| 510 |
+
f"Failed to get transcript using YouTube API: {str(transcript_error)}"
|
| 511 |
+
)
|
| 512 |
+
print("Falling back to Gemini-based transcription...")
|
| 513 |
+
|
| 514 |
+
# Fallback to Gemini-based transcription
|
| 515 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
| 516 |
+
# Download audio from YouTube
|
| 517 |
+
ydl_opts = {
|
| 518 |
+
"format": "bestaudio/best",
|
| 519 |
+
"outtmpl": os.path.join(tmpdir, "audio.%(ext)s"),
|
| 520 |
+
"quiet": True,
|
| 521 |
+
"noplaylist": True,
|
| 522 |
+
"postprocessors": [
|
| 523 |
+
{
|
| 524 |
+
"key": "FFmpegExtractAudio",
|
| 525 |
+
"preferredcodec": "wav",
|
| 526 |
+
"preferredquality": "192",
|
| 527 |
+
}
|
| 528 |
+
],
|
| 529 |
+
}
|
| 530 |
+
|
| 531 |
+
try:
|
| 532 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 533 |
+
info = ydl.extract_info(url, download=True)
|
| 534 |
+
audio_path = next(
|
| 535 |
+
(
|
| 536 |
+
os.path.join(tmpdir, f)
|
| 537 |
+
for f in os.listdir(tmpdir)
|
| 538 |
+
if f.endswith(".wav")
|
| 539 |
+
),
|
| 540 |
+
None,
|
| 541 |
+
)
|
| 542 |
+
|
| 543 |
+
if not audio_path:
|
| 544 |
+
raise RuntimeError(
|
| 545 |
+
"Failed to download audio"
|
| 546 |
+
) from transcript_error
|
| 547 |
+
|
| 548 |
+
# Use Gemini to transcribe the audio
|
| 549 |
+
client = genai.Client(api_key=os.getenv("GEMINI_KEY"))
|
| 550 |
+
model = "models/gemini-1.5-flash-8b"
|
| 551 |
+
|
| 552 |
+
# Read the audio file
|
| 553 |
+
with open(audio_path, "rb") as audio_file:
|
| 554 |
+
audio_data = audio_file.read()
|
| 555 |
+
|
| 556 |
+
# Create the content with audio data
|
| 557 |
+
contents = types.Content(
|
| 558 |
+
parts=[
|
| 559 |
+
types.Part(
|
| 560 |
+
file_data=types.FileData(
|
| 561 |
+
mime_type="audio/wav",
|
| 562 |
+
data=audio_data,
|
| 563 |
+
)
|
| 564 |
+
),
|
| 565 |
+
types.Part(
|
| 566 |
+
text="Please transcribe this audio file. Include timestamps if possible."
|
| 567 |
+
),
|
| 568 |
+
]
|
| 569 |
+
)
|
| 570 |
+
|
| 571 |
+
# Generate transcription
|
| 572 |
+
response = client.models.generate_content(
|
| 573 |
+
model=model, contents=contents
|
| 574 |
+
)
|
| 575 |
+
return response.text
|
| 576 |
+
|
| 577 |
+
except yt_dlp.utils.DownloadError as e:
|
| 578 |
+
raise RuntimeError(
|
| 579 |
+
f"Error downloading YouTube video: {str(e)}"
|
| 580 |
+
) from transcript_error
|
| 581 |
+
except Exception as e:
|
| 582 |
+
raise RuntimeError(
|
| 583 |
+
f"Error processing YouTube video: {str(e)}"
|
| 584 |
+
) from transcript_error
|
| 585 |
+
|
| 586 |
+
except Exception as e:
|
| 587 |
+
raise RuntimeError(f"Error in YouTube transcription: {str(e)}") from e
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
@tool
|
| 591 |
+
def website_scrape(url: str, question: str) -> str:
|
| 592 |
+
"""Scrapes a website and returns the text.
|
| 593 |
+
|
| 594 |
+
Args:
|
| 595 |
+
url (str): the URL to the website to scrape.
|
| 596 |
+
|
| 597 |
+
Returns:
|
| 598 |
+
str: The text of the website.
|
| 599 |
+
"""
|
| 600 |
+
|
| 601 |
+
with sync_playwright() as p:
|
| 602 |
+
browser = p.chromium.launch(headless=True)
|
| 603 |
+
page = browser.new_page()
|
| 604 |
+
page.goto(url)
|
| 605 |
+
html_content = page.content()
|
| 606 |
+
browser.close()
|
| 607 |
+
|
| 608 |
+
soup = BeautifulSoup(html_content, "html.parser")
|
| 609 |
+
|
| 610 |
+
# Extract text from the website
|
| 611 |
+
text = soup.get_text()
|
| 612 |
+
|
| 613 |
+
return text
|
src/tools/__init__.py
DELETED
|
File without changes
|
src/tools/image_to_text.py
DELETED
|
File without changes
|
src/tools/web_scrapper.py
DELETED
|
@@ -1,23 +0,0 @@
|
|
| 1 |
-
from bs4 import BeautifulSoup
|
| 2 |
-
from langgraph import Tool
|
| 3 |
-
from playwright.sync_api import sync_playwright
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
def extract_website_content(url: str) -> str:
|
| 7 |
-
with sync_playwright() as p:
|
| 8 |
-
browser = p.chromium.launch(headless=True)
|
| 9 |
-
page = browser.new_page()
|
| 10 |
-
page.goto(url)
|
| 11 |
-
html_content = page.content()
|
| 12 |
-
browser.close()
|
| 13 |
-
|
| 14 |
-
soup = BeautifulSoup(html_content, "html.parser")
|
| 15 |
-
return soup.get_text()
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
def web_scrapper_tool():
|
| 19 |
-
return Tool.from_function(
|
| 20 |
-
func=extract_website_content,
|
| 21 |
-
name="scrape_website",
|
| 22 |
-
description="Extracts the main content of a webpage given its URL.",
|
| 23 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tests/test_tools.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pytest
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
import tempfile
|
| 5 |
+
from src.tools import (
|
| 6 |
+
use_vision_model,
|
| 7 |
+
review_youtube_video,
|
| 8 |
+
video_frames_to_images,
|
| 9 |
+
read_file,
|
| 10 |
+
download_file_from_url,
|
| 11 |
+
extract_text_from_image,
|
| 12 |
+
analyze_csv_file,
|
| 13 |
+
analyze_excel_file,
|
| 14 |
+
transcribe_audio,
|
| 15 |
+
transcribe_youtube,
|
| 16 |
+
website_scrape,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
# Load environment variables
|
| 20 |
+
load_dotenv()
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
@pytest.fixture
|
| 24 |
+
def test_dir(tmp_path):
|
| 25 |
+
"""Create a temporary directory for test files."""
|
| 26 |
+
return tmp_path
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def test_website_scrape():
|
| 30 |
+
"""Test website scraping functionality."""
|
| 31 |
+
url = "https://en.wikipedia.org/wiki/2025_World_Snooker_Championship"
|
| 32 |
+
question = "What is the main heading?"
|
| 33 |
+
result = website_scrape.invoke({"url": url, "question": question})
|
| 34 |
+
assert isinstance(result, str)
|
| 35 |
+
assert len(result) > 0
|
| 36 |
+
print("\nWebsite Scrape Test Result:", result[:200])
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def test_read_file(test_dir):
|
| 40 |
+
"""Test file reading functionality."""
|
| 41 |
+
# Create a test file
|
| 42 |
+
test_file = test_dir / "test.txt"
|
| 43 |
+
test_file.write_text("Test content")
|
| 44 |
+
|
| 45 |
+
result = read_file.invoke({"filepath": str(test_file)})
|
| 46 |
+
assert isinstance(result, str)
|
| 47 |
+
assert result == "Test content"
|
| 48 |
+
print("\nRead File Test Result:", result)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def test_download_file_from_url():
|
| 52 |
+
"""Test file downloading functionality."""
|
| 53 |
+
path = "https://fastly.picsum.photos/id/856/400/400.jpg?hmac=tb7tfZIDAlSxzTJ6V0l3sJH4CxcWXW1z4aiWrqbbQSs"
|
| 54 |
+
|
| 55 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 56 |
+
temp_file = os.path.join(temp_dir, "test.jpg")
|
| 57 |
+
|
| 58 |
+
print(f"Downloading file to: {temp_file}")
|
| 59 |
+
|
| 60 |
+
result = download_file_from_url.invoke(
|
| 61 |
+
{"url": path, "file_path": temp_file}
|
| 62 |
+
)
|
| 63 |
+
assert isinstance(result, str)
|
| 64 |
+
assert os.path.exists(temp_file)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def test_extract_text_from_image():
|
| 68 |
+
"""Test OCR functionality."""
|
| 69 |
+
image_path = "test_files/text_in_image.jpg"
|
| 70 |
+
result = extract_text_from_image.invoke({"image_path": image_path})
|
| 71 |
+
assert isinstance(result, str)
|
| 72 |
+
print("\nExtract Text Test Result:", result)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def test_analyze_csv_file(test_dir):
|
| 76 |
+
"""Test CSV analysis functionality."""
|
| 77 |
+
# Create a test CSV file
|
| 78 |
+
file_path = "test_files/customers-100.csv"
|
| 79 |
+
|
| 80 |
+
result = analyze_csv_file.invoke(
|
| 81 |
+
{
|
| 82 |
+
"file_path": file_path,
|
| 83 |
+
"query": "What is the first name of the first customer?",
|
| 84 |
+
}
|
| 85 |
+
)
|
| 86 |
+
assert isinstance(result, str)
|
| 87 |
+
assert "CSV file loaded" in result
|
| 88 |
+
print("\nAnalyze CSV Test Result:", result)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def test_analyze_excel_file():
|
| 92 |
+
"""Test Excel analysis functionality."""
|
| 93 |
+
excel_path = "test_files/Project-Management-Sample-Data.xlsx"
|
| 94 |
+
result = analyze_excel_file.invoke(
|
| 95 |
+
{
|
| 96 |
+
"file_path": excel_path,
|
| 97 |
+
"query": "What is the name of the first task?",
|
| 98 |
+
}
|
| 99 |
+
)
|
| 100 |
+
assert isinstance(result, str)
|
| 101 |
+
assert "Excel file loaded" in result
|
| 102 |
+
print("\nAnalyze Excel Test Result:", result)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def test_transcribe_audio():
|
| 106 |
+
"""Test audio transcription functionality."""
|
| 107 |
+
audio_path = "test_files/CECIL-I-NEED-YOU-CECIL.mp3"
|
| 108 |
+
result = transcribe_audio.invoke({"audio_file_path": audio_path})
|
| 109 |
+
assert isinstance(result, str)
|
| 110 |
+
print("\nTranscribe Audio Test Result:", result)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def test_transcribe_youtube():
|
| 114 |
+
"""Test YouTube transcription functionality."""
|
| 115 |
+
url = "https://www.youtube.com/watch?v=dQw4w9WgXcQ" # Example video
|
| 116 |
+
result = transcribe_youtube.invoke({"url": url})
|
| 117 |
+
assert isinstance(result, str)
|
| 118 |
+
print("\nTranscribe YouTube Test Result:", result[:200])
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def test_video_frames_to_images():
|
| 122 |
+
"""Test video frame extraction functionality."""
|
| 123 |
+
url = "https://www.youtube.com/watch?v=dQw4w9WgXcQ" # Example video
|
| 124 |
+
|
| 125 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 126 |
+
result = video_frames_to_images.invoke(
|
| 127 |
+
{"url": url, "folder_name": temp_dir, "sample_interval_seconds": 5}
|
| 128 |
+
)
|
| 129 |
+
assert isinstance(result, list)
|
| 130 |
+
assert all(isinstance(path, str) for path in result)
|
| 131 |
+
assert os.path.exists(os.path.join(temp_dir, "frames"))
|
| 132 |
+
assert len(os.listdir(os.path.join(temp_dir, "frames"))) == len(result)
|
| 133 |
+
print(f"\nVideo Frames Test Result: Extracted {len(result)} frames")
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def test_use_vision_model():
|
| 137 |
+
"""Test vision model functionality."""
|
| 138 |
+
image_paths = ["test_files/people.jpeg", "test_files/text_in_image.jpg"]
|
| 139 |
+
result = use_vision_model.invoke(
|
| 140 |
+
{
|
| 141 |
+
"question": "What do you see in these images?",
|
| 142 |
+
"image_paths": image_paths,
|
| 143 |
+
}
|
| 144 |
+
)
|
| 145 |
+
assert isinstance(result, str)
|
| 146 |
+
print("\nVision Model Test Result:", result)
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def test_review_youtube_video():
|
| 150 |
+
"""Test YouTube video review functionality."""
|
| 151 |
+
url = "https://www.youtube.com/watch?v=dQw4w9WgXcQ" # Example video
|
| 152 |
+
question = "What is the main topic of this video?"
|
| 153 |
+
result = review_youtube_video.invoke({"url": url, "question": question})
|
| 154 |
+
assert isinstance(result, str)
|
| 155 |
+
print("\nReview YouTube Test Result:", result)
|