Spaces:
Restarting
on
CPU Upgrade
Restarting
on
CPU Upgrade
import glob | |
import json | |
import math | |
import os | |
from dataclasses import dataclass | |
from typing import List | |
import traceback | |
import dateutil | |
import numpy as np | |
from huggingface_hub import ModelCard | |
from src.display.formatting import make_clickable_model | |
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, Language, WeightType, ORIGINAL_TASKS | |
from src.envs import GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS, SHOW_INCOMPLETE_EVALS | |
class EvalResult: | |
# Also see src.display.utils.AutoEvalColumn for what will be displayed. | |
eval_name: str # org_model_precision (uid) | |
full_model: str # org/model (path on hub) | |
org: str | |
model: str | |
results: dict | |
model_sha: str = "" # commit hash | |
revision: str = "main" | |
precision: Precision = Precision.Unknown | |
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ... | |
weight_type: WeightType = WeightType.Original # Original or Adapter | |
main_language: Language = Language.Unknown | |
architecture: str = "Unknown" # From config file | |
license: str = "?" | |
likes: int = 0 | |
num_params: int = 0 | |
date: str = "" # submission date of request file | |
still_on_hub: bool = True | |
is_merge: bool = False | |
flagged: bool = False | |
status: str = "FINISHED" | |
tags: list = None | |
json_filename: str = None | |
eval_time: float = 0.0 | |
original_benchmark_average: float = None | |
hidden: bool = False # Do not show on the leaderboard | |
num_evals_model_rev: int = 1 | |
def init_from_json_file(self, json_filepath, is_original=False): | |
"""Inits the result from the specific model result file""" | |
with open(json_filepath) as fp: | |
data = json.load(fp) | |
json_filename = os.path.basename(json_filepath) | |
# We manage the legacy config format | |
config = data.get("config_general") | |
# Precision | |
precision = Precision.from_str(config.get("model_dtype")) | |
num_params = round(config.get("model_num_parameters", 0) / 1_000_000_000, 2) | |
revision = config.get("model_revision", "main") | |
model_sha = config.get("model_sha", "") | |
# Get model and org | |
org_and_model = config.get("model_name") | |
org_and_model = org_and_model.split("/", 1) | |
prefix = f"{precision.value.name}" | |
if revision != "main": | |
prefix = f"{revision}_{prefix}" | |
if len(org_and_model) == 1: | |
org = None | |
model = org_and_model[0] | |
result_key = f"{model}_{prefix}" | |
else: | |
org = org_and_model[0] | |
model = org_and_model[1] | |
result_key = f"{org}_{model}_{prefix}" | |
full_model = "/".join(org_and_model) | |
# Extract results available in this file (some results are split in several files) | |
results = {} | |
tasks = [(task.value.benchmark, task.value.metric) for task in Tasks] | |
if is_original: | |
tasks = ORIGINAL_TASKS | |
for task in tasks: | |
benchmark, metric = task | |
# We skip old mmlu entries | |
wrong_mmlu_version = False | |
if benchmark == "hendrycksTest": | |
for mmlu_k in ["harness|hendrycksTest-abstract_algebra|5", "hendrycksTest-abstract_algebra"]: | |
if mmlu_k in data["versions"] and data["versions"][mmlu_k] == 0: | |
wrong_mmlu_version = True | |
if wrong_mmlu_version: | |
continue | |
# Some truthfulQA values are NaNs | |
if benchmark == "truthfulqa:mc" and "harness|truthfulqa:mc|0" in data["results"]: | |
if math.isnan(float(data["results"]["harness|truthfulqa:mc|0"][metric])): | |
results[benchmark] = 0.0 | |
continue | |
def get_metric(v): | |
res = v.get(metric, None) | |
if res is None: | |
res = v.get(metric + ',all', None) | |
if res is None: | |
res = v.get(metric + ',None', None) | |
if res is None: | |
res = v.get('main_score', None) | |
return res | |
# We average all scores of a given metric (mostly for mmlu) | |
accs = np.array([get_metric(v) for k, v in data["results"].items() if benchmark in k]) | |
if accs.size == 0 or any([acc is None for acc in accs]): | |
continue | |
mean_acc = np.mean(accs) * 100.0 | |
results[benchmark] = mean_acc | |
return self( | |
eval_name=result_key, | |
full_model=full_model, | |
org=org, | |
model=model, | |
results=results, | |
model_sha=model_sha, | |
revision=revision, | |
precision=precision, | |
json_filename=json_filename, | |
eval_time=config.get("total_evaluation_time_seconds", 0.0), | |
num_params=num_params | |
) | |
def update_with_request_file(self, requests_path): | |
"""Finds the relevant request file for the current model and updates info with it""" | |
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name, self.revision) | |
try: | |
with open(request_file, "r") as f: | |
request = json.load(f) | |
self.model_type = ModelType.from_str(request.get("model_type", "Unknown")) | |
self.weight_type = WeightType[request.get("weight_type", "Original")] | |
self.num_params = max(request.get("params", 0), self.num_params) | |
self.date = request.get("submitted_time", "") | |
self.architecture = request.get("architectures", "Unknown") | |
self.status = request.get("status", "FAILED") | |
self.hidden = request.get("hidden", False) | |
self.main_language = request.get("main_language", "?") | |
except Exception as e: | |
self.status = "FAILED" | |
print(f"Could not find request file for {self.org}/{self.model}, precision {self.precision.value.name}, revision {self.revision}") | |
def update_with_dynamic_file_dict(self, file_dict): | |
self.license = file_dict.get("license", "?") | |
self.likes = file_dict.get("likes", 0) | |
self.still_on_hub = file_dict["still_on_hub"] | |
self.flagged = any("flagged" in tag for tag in file_dict["tags"]) | |
self.tags = file_dict["tags"] | |
if 'original_llm_scores' in file_dict: | |
if len(file_dict['original_llm_scores']) > 0: | |
if self.precision.value.name in file_dict['original_llm_scores']: | |
self.original_benchmark_average = file_dict['original_llm_scores'][self.precision.value.name] | |
else: | |
self.original_benchmark_average = max(list(file_dict['original_llm_scores'].values())) | |
def to_dict(self): | |
"""Converts the Eval Result to a dict compatible with our dataframe display""" | |
average = [] | |
npm = [] | |
for task in Tasks: | |
if task.value.benchmark not in self.results: | |
continue | |
res = self.results[task.value.benchmark] | |
if res is None or np.isnan(res) or not (isinstance(res, float) or isinstance(res, int)): | |
continue | |
average.append(res) | |
npm.append((res-task.value.baseline)*100.0 / (100.0-task.value.baseline)) | |
average = round(sum(average)/len(average), 2) | |
npm = round(sum(npm)/len(npm), 2) | |
data_dict = { | |
"eval_name": self.eval_name, # not a column, just a save name, | |
AutoEvalColumn.precision.name: self.precision.value.name, | |
AutoEvalColumn.model_type.name: self.model_type.value.name, | |
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol, | |
AutoEvalColumn.weight_type.name: self.weight_type.value.name, | |
AutoEvalColumn.architecture.name: self.architecture, | |
AutoEvalColumn.model.name: make_clickable_model(self.full_model, self.json_filename, revision=self.revision, precision=self.precision.value.name, num_evals_same_model=self.num_evals_model_rev), | |
AutoEvalColumn.dummy.name: self.full_model, | |
AutoEvalColumn.revision.name: self.revision, | |
AutoEvalColumn.average.name: average, | |
AutoEvalColumn.license.name: self.license, | |
AutoEvalColumn.likes.name: self.likes, | |
AutoEvalColumn.params.name: self.num_params, | |
AutoEvalColumn.still_on_hub.name: self.still_on_hub, | |
AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False, | |
AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(), | |
AutoEvalColumn.flagged.name: self.flagged, | |
AutoEvalColumn.eval_time.name: self.eval_time, | |
AutoEvalColumn.npm.name: npm, | |
AutoEvalColumn.main_language.name: self.main_language | |
} | |
for task in Tasks: | |
if task.value.benchmark in self.results: | |
data_dict[task.value.col_name] = self.results[task.value.benchmark] | |
if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS: | |
data_dict[AutoEvalColumn.original_benchmark_average.name] = self.original_benchmark_average | |
return data_dict | |
def get_request_file_for_model(requests_path, model_name, precision, revision): | |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED""" | |
request_files = os.path.join( | |
requests_path, | |
f"{model_name}_eval_request_*.json", | |
) | |
request_files = glob.glob(request_files) | |
if revision is None or revision == "": | |
revision = "main" | |
# Select correct request file (precision) | |
request_file = "" | |
request_files = sorted(request_files, reverse=True) | |
for tmp_request_file in request_files: | |
with open(tmp_request_file, "r") as f: | |
req_content = json.load(f) | |
if req_content["revision"] is None or req_content["revision"] == "": | |
req_content["revision"] = "main" | |
if ( | |
req_content["status"] in ["FINISHED", "PENDING_NEW_EVAL" if SHOW_INCOMPLETE_EVALS else "FINISHED"] | |
and req_content["precision"] == precision.split(".")[-1] | |
and req_content["revision"] == revision | |
): | |
request_file = tmp_request_file | |
return request_file | |
def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: str) -> list[EvalResult]: | |
"""From the path of the results folder root, extract all needed info for results""" | |
model_result_filepaths = [] | |
for root, _, files in os.walk(results_path): | |
# We should only have json files in model results | |
if len(files) == 0 or any([not f.endswith(".json") for f in files]): | |
continue | |
# Sort the files by date | |
try: | |
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7]) | |
except dateutil.parser._parser.ParserError: | |
files = [files[-1]] | |
for file in files: | |
model_result_filepaths.append(os.path.join(root, file)) | |
with open(dynamic_path) as f: | |
dynamic_data = json.load(f) | |
count_model_rev = {} | |
eval_results = {} | |
for model_result_filepath in model_result_filepaths: | |
# Creation of result | |
eval_result = EvalResult.init_from_json_file(model_result_filepath) | |
eval_result.update_with_request_file(requests_path) | |
if eval_result.full_model in dynamic_data: | |
eval_result.update_with_dynamic_file_dict(dynamic_data[eval_result.full_model]) | |
# Store results of same eval together | |
eval_name = eval_result.eval_name | |
if eval_name in eval_results.keys(): | |
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None}) | |
eval_results[eval_name].json_filename = eval_result.json_filename | |
else: | |
eval_results[eval_name] = eval_result | |
#count model_revision to display precision if duplicate | |
if eval_result.status in ["FINISHED", "PENDING_NEW_EVAL" if SHOW_INCOMPLETE_EVALS else "FINISHED"] and not eval_result.hidden: | |
model_rev_key = f"{eval_result.full_model}_{eval_result.revision}" | |
if model_rev_key not in count_model_rev: | |
count_model_rev[model_rev_key] = 1 | |
else: | |
count_model_rev[model_rev_key] += 1 | |
results = [] | |
for v in eval_results.values(): | |
try: | |
if v.status in ["FINISHED", "PENDING_NEW_EVAL" if SHOW_INCOMPLETE_EVALS else "FINISHED"] and not v.hidden: | |
model_rev_key = f"{v.full_model}_{v.revision}" | |
v.num_evals_model_rev = count_model_rev[model_rev_key] | |
v.to_dict() # we test if the dict version is complete | |
results.append(v) | |
except KeyError as e: # not all eval values present | |
continue | |
return results | |