Spaces:
Sleeping
Sleeping
| import os | |
| import re | |
| from typing import Literal, TypedDict, get_args | |
| import gradio as gr | |
| import pandas as pd | |
| import requests | |
| from langchain_core.messages import HumanMessage, SystemMessage | |
| from langchain_openai import ChatOpenAI | |
| from langgraph.graph import END, StateGraph | |
| from helpers import fetch_task_attachment, get_prompt, sniff_excel_type | |
| from tools import ( | |
| analyze_excel_file, | |
| calculator, | |
| run_py, | |
| transcribe_via_whisper, | |
| vision_task, | |
| web_multi_search, | |
| wiki_search, | |
| youtube_transcript, | |
| ) | |
| # --------------------------------------------------------------------------- # | |
| # CONFIGURATION # | |
| # --------------------------------------------------------------------------- # | |
| DEFAULT_API_URL: str = "https://agents-course-unit4-scoring.hf.space" | |
| MODEL_NAME: str = "o4-mini" # "gpt-4.1-mini" | |
| TEMPERATURE: float = 0.1 | |
| # --------------------------------------------------------------------------- # | |
| # QUESTION CLASSIFIER # | |
| # --------------------------------------------------------------------------- # | |
| _LABELS = Literal[ | |
| "math", | |
| "youtube", | |
| "image", | |
| "code", | |
| "excel", | |
| "audio", | |
| "general", | |
| ] | |
| # --------------------------------------------------------------------------- # | |
| # ------------------------------- AGENT STATE ----------------------------- # | |
| # --------------------------------------------------------------------------- # | |
| class AgentState(TypedDict): | |
| question: str | |
| label: str | |
| context: str | |
| answer: str | |
| task_id: str | None = None | |
| # --------------------------------------------------------------------------- # | |
| # NODES (LangGraph functions) # | |
| # --------------------------------------------------------------------------- # | |
| _llm_router = ChatOpenAI(model=MODEL_NAME) | |
| _llm_answer = ChatOpenAI(model=MODEL_NAME) | |
| def route_question(state: AgentState) -> AgentState: # noqa: D401 | |
| """Label the task so we know which toolchain to invoke.""" | |
| question = state["question"] | |
| label_values = set(get_args(_LABELS)) # -> ("math", "youtube", ...) | |
| prompt = get_prompt( | |
| prompt_key="router", | |
| question=question, | |
| labels=", ".join(repr(v) for v in label_values), | |
| ) | |
| resp = _llm_router.invoke(prompt).content.strip().lower() | |
| state["label"] = resp if resp in label_values else "general" | |
| return state | |
| def invoke_tools_context(state: AgentState) -> AgentState: | |
| question, label, task_id = state["question"], state["label"], state["task_id"] | |
| matched_pattern = r"https?://\S+" | |
| matched_obj = re.search(matched_pattern, question) | |
| # ---- attachment detection ------------------------------------------------ | |
| if task_id: | |
| blob, ctype = fetch_task_attachment(api_url=DEFAULT_API_URL, task_id=task_id) | |
| if any([blob, ctype]): | |
| print(f"[DEBUG] attachment type={ctype} ") | |
| # ── Python code ------------------------------------------------------ | |
| if "python" in ctype: | |
| print("[DEBUG] Working with a Python attachment file") | |
| state["answer"] = run_py.invoke({"code": blob.decode("utf-8")}) | |
| state["label"] = "code" | |
| return state | |
| # ── Excel / CSV ------------------------------------------------------ | |
| # 1) Header hints | |
| header_says_sheet = any(key in ctype for key in ("excel", "sheet", "csv")) | |
| # 2) Magic-number sniff (works when ctype is application/octet-stream) | |
| blob_says_sheet = sniff_excel_type(blob) in {"xlsx", "xls", "csv"} | |
| if header_says_sheet or blob_says_sheet: | |
| if blob_says_sheet: | |
| print(f"[DEBUG] octet-stream sniffed as {sniff_excel_type(blob)}") | |
| print("[DEBUG] Working with a Excel/CSV attachment file") | |
| state["answer"] = analyze_excel_file.invoke( | |
| {"xls_bytes": blob, "question": question} | |
| ) | |
| state["label"] = "excel" | |
| return state | |
| # ── Audio -------------------------------------------------------- | |
| if "audio" in ctype: | |
| print("[DEBUG] Working with an audio attachment file") | |
| state["context"] = transcribe_via_whisper.invoke({"audio_bytes": blob}) | |
| state["label"] = "audio" | |
| return state | |
| # ── Image -------------------------------------------------------- | |
| if "image" in ctype: | |
| print("[DEBUG] Working with an image attachment file") | |
| state["answer"] = vision_task.invoke( | |
| {"img_bytes": blob, "question": question} | |
| ) | |
| state["label"] = "image" | |
| return state | |
| if label == "math": | |
| print("[TOOL] calculator") | |
| expr = re.sub(r"\s+", "", question) | |
| state["answer"] = calculator.invoke({"expression": expr}) | |
| elif label == "youtube" and matched_obj: | |
| print("[TOOL] youtube_transcript") | |
| if matched_obj: | |
| url = matched_obj[0] | |
| state["context"] = youtube_transcript.invoke({"url": url}) | |
| elif label == "search": | |
| print("[TOOL] web search") | |
| search_json = web_multi_search.invoke({"query": question}) | |
| wiki_text = wiki_search.invoke({"query": question}) | |
| state["context"] = f"{search_json}\n\n{wiki_text}" | |
| else: | |
| print("[TOOL] reasoning only (no search)") | |
| state["context"] = "" | |
| return state | |
| def synthesize_response(state: AgentState) -> AgentState: | |
| # Skip LLM for deterministic labels or tasks that already used LLMs | |
| if state["label"] in {"code", "excel", "image", "math"}: | |
| print(f"[DEBUG] ANSWER ({state['label']}) >>> {state['answer']}") | |
| return state | |
| prompt = [ | |
| SystemMessage(content=get_prompt("final_llm_system")), | |
| HumanMessage( | |
| content=get_prompt( | |
| prompt_key="final_llm_user", | |
| question=state["question"], | |
| context=state["context"], | |
| ) | |
| ), | |
| ] | |
| raw = _llm_answer.invoke(prompt).content.strip() | |
| state["answer"] = raw | |
| return state | |
| def format_output(state: AgentState) -> AgentState: | |
| txt = re.sub(r"^(final answer:?\s*)", "", state["answer"], flags=re.I).strip() | |
| # If question demands a single token (first name / one word), enforce it | |
| if any(kw in state["question"].lower() for kw in ["first name", "single word"]): | |
| txt = txt.split(" ")[0] | |
| state["answer"] = txt.rstrip(".") | |
| return state | |
| # --------------------------------------------------------------------------- # | |
| # BUILD THE GRAPH # | |
| # --------------------------------------------------------------------------- # | |
| def build_graph() -> StateGraph: | |
| g = StateGraph(AgentState) | |
| g.set_entry_point("route_question") | |
| g.add_node("route_question", route_question) | |
| g.add_node("invoke_tools", invoke_tools_context) | |
| g.add_node("synthesize_response", synthesize_response) | |
| g.add_node("format_output", format_output) | |
| g.add_edge("route_question", "invoke_tools") | |
| g.add_edge("invoke_tools", "synthesize_response") | |
| g.add_edge("synthesize_response", "format_output") | |
| g.add_edge("format_output", END) | |
| return g.compile() | |
| # --------------------------------------------------------------------------- # | |
| # ------------------------------- GAIA AGENT ------------------------------ # | |
| # --------------------------------------------------------------------------- # | |
| class GAIAAgent: | |
| """Callable wrapper used by run_and_submit_all.""" | |
| def __init__(self) -> None: | |
| self.graph = build_graph() | |
| def __call__(self, question: str, task_id: str | None = None) -> str: | |
| state: AgentState = { | |
| "question": question, | |
| "label": "general", | |
| "context": "", | |
| "answer": "", | |
| "task_id": task_id, | |
| } | |
| final = self.graph.invoke(state) | |
| # ── Debug trace ─────────────────────────────────────────────── | |
| route = final["label"] | |
| llm_used = route != "math" # math path skips the generation LLM | |
| print(f"[DEBUG] route='{route}' | LLM_used={llm_used}") | |
| # ───────────────────────────────────────────────────────────── | |
| return final["answer"] | |
| def run_and_submit_all( | |
| profile: gr.OAuthProfile | None, | |
| ) -> tuple[str, pd.DataFrame | None]: | |
| """ | |
| Fetches all questions, runs the BasicAgent on them, submits all answers, | |
| and displays the results. | |
| """ | |
| # --- Determine HF Space Runtime URL and Repo URL --- | |
| space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
| if profile: | |
| username = f"{profile.username}" | |
| print(f"User logged in: {username}") | |
| else: | |
| print("User not logged in.") | |
| return "Please Login to Hugging Face with the button.", None | |
| api_url = DEFAULT_API_URL | |
| questions_url = f"{api_url}/questions" | |
| submit_url = f"{api_url}/submit" | |
| # 1. Instantiate Agent ( modify this part to create your agent) | |
| try: | |
| agent = GAIAAgent() | |
| print("GAIA Agent initialized successfully") | |
| except Exception as e: | |
| print(f"Error instantiating agent: {e}") | |
| return f"Error initializing agent: {e}", None | |
| # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
| agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
| print(agent_code) | |
| # 2. Fetch Questions | |
| print(f"Fetching questions from: {questions_url}") | |
| try: | |
| response = requests.get(questions_url, timeout=15) | |
| response.raise_for_status() | |
| questions_data = response.json() | |
| if not questions_data: | |
| print("Fetched questions list is empty.") | |
| return "Fetched questions list is empty or invalid format.", None | |
| print(f"Fetched {len(questions_data)} questions.") | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error fetching questions: {e}") | |
| return f"Error fetching questions: {e}", None | |
| except requests.exceptions.JSONDecodeError as e: | |
| print(f"Error decoding JSON response from questions endpoint: {e}") | |
| print(f"Response text: {response.text[:500]}") | |
| return f"Error decoding server response for questions: {e}", None | |
| except Exception as e: | |
| print(f"An unexpected error occurred fetching questions: {e}") | |
| return f"An unexpected error occurred fetching questions: {e}", None | |
| # 3. Run your Agent | |
| results_log = [] | |
| answers_payload = [] | |
| print(f"Running agent on {len(questions_data)} questions...") | |
| for item in questions_data: | |
| task_id = item.get("task_id") | |
| question_text = item.get("question") | |
| if not task_id or question_text is None: | |
| print(f"Skipping item with missing task_id or question: {item}") | |
| continue | |
| try: | |
| submitted_answer = agent(question=question_text, task_id=task_id) | |
| answers_payload.append( | |
| {"task_id": task_id, "submitted_answer": submitted_answer} | |
| ) | |
| results_log.append( | |
| { | |
| "Task ID": task_id, | |
| "Question": question_text, | |
| "Submitted Answer": submitted_answer, | |
| } | |
| ) | |
| except Exception as e: | |
| print(f"Error running agent on task {task_id}: {e}") | |
| results_log.append( | |
| { | |
| "Task ID": task_id, | |
| "Question": question_text, | |
| "Submitted Answer": f"AGENT ERROR: {e}", | |
| } | |
| ) | |
| if not answers_payload: | |
| print("Agent did not produce any answers to submit.") | |
| return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
| # 4. Prepare Submission | |
| submission_data = { | |
| "username": username.strip(), | |
| "agent_code": agent_code, | |
| "answers": answers_payload, | |
| } | |
| status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
| print(status_update) | |
| # 5. Submit | |
| print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
| try: | |
| response = requests.post(submit_url, json=submission_data, timeout=60) | |
| response.raise_for_status() | |
| result_data = response.json() | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {result_data.get('username')}\n" | |
| f"Overall Score: {result_data.get('score', 'N/A')}% " | |
| f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
| f"Message: {result_data.get('message', 'No message received.')}" | |
| ) | |
| print("Submission successful.") | |
| results_df = pd.DataFrame(results_log) | |
| return final_status, results_df | |
| except requests.exceptions.HTTPError as e: | |
| error_detail = f"Server responded with status {e.response.status_code}." | |
| try: | |
| error_json = e.response.json() | |
| error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
| except requests.exceptions.JSONDecodeError: | |
| error_detail += f" Response: {e.response.text[:500]}" | |
| status_message = f"Submission Failed: {error_detail}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.Timeout: | |
| status_message = "Submission Failed: The request timed out." | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.RequestException as e: | |
| status_message = f"Submission Failed: Network error - {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except Exception as e: | |
| status_message = f"An unexpected error occurred during submission: {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| # --- Build Gradio Interface using Blocks --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Basic Agent Evaluation Runner") | |
| gr.Markdown( | |
| """ | |
| **Instructions:** | |
| 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
| 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
| 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
| --- | |
| **Disclaimers:** | |
| Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
| This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
| """ | |
| ) | |
| gr.LoginButton() | |
| run_button = gr.Button("Run Evaluation & Submit All Answers") | |
| status_output = gr.Textbox( | |
| label="Run Status / Submission Result", lines=5, interactive=False | |
| ) | |
| # Removed max_rows=10 from DataFrame constructor | |
| results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
| run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) | |
| if __name__ == "__main__": | |
| print("\n" + "-" * 30 + " App Starting " + "-" * 30) | |
| # Check for SPACE_HOST and SPACE_ID at startup for information | |
| space_host_startup = os.getenv("SPACE_HOST") | |
| space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
| if space_host_startup: | |
| print(f"✅ SPACE_HOST found: {space_host_startup}") | |
| print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
| else: | |
| print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
| if space_id_startup: # Print repo URLs if SPACE_ID is found | |
| print(f"✅ SPACE_ID found: {space_id_startup}") | |
| print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
| print( | |
| f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main" | |
| ) | |
| else: | |
| print( | |
| "ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined." | |
| ) | |
| print("-" * (60 + len(" App Starting ")) + "\n") | |
| print("Launching Gradio Interface for Basic Agent Evaluation...") | |
| demo.launch(debug=True, share=False) | |
| ## For Local testing | |
| # if __name__ == "__main__": | |
| # agent = GAIAAgent() | |
| # while True: | |
| # try: | |
| # q = input("\nEnter question (or blank to quit): ") | |
| # except KeyboardInterrupt: | |
| # break | |
| # if not q.strip(): | |
| # break | |
| # print("Answer:", agent(q)) | |