Spaces:
Sleeping
Sleeping
import xgboost as xgb | |
import pandas as pd | |
from datetime import datetime, timedelta | |
import os | |
# Extended dummy dataset | |
data = pd.DataFrame([ | |
{"last_premium_paid_date": (datetime.now() - timedelta(days=60)).strftime('%Y-%m-%d'), "payment_mode": "Annual", "policy_term": 15, "policy_age": 3, "risk": 1}, | |
{"last_premium_paid_date": (datetime.now() - timedelta(days=10)).strftime('%Y-%m-%d'), "payment_mode": "Monthly", "policy_term": 20, "policy_age": 2, "risk": 0}, | |
{"last_premium_paid_date": (datetime.now() - timedelta(days=400)).strftime('%Y-%m-%d'), "payment_mode": "Quarterly", "policy_term": 25, "policy_age": 5, "risk": 1}, | |
{"last_premium_paid_date": (datetime.now() - timedelta(days=700)).strftime('%Y-%m-%d'), "payment_mode": "Semi-Annual", "policy_term": 10, "policy_age": 8, "risk": 1}, | |
{"last_premium_paid_date": (datetime.now() - timedelta(days=90)).strftime('%Y-%m-%d'), "payment_mode": "Annual", "policy_term": 12, "policy_age": 4, "risk": 0}, | |
{"last_premium_paid_date": (datetime.now() - timedelta(days=30)).strftime('%Y-%m-%d'), "payment_mode": "Monthly", "policy_term": 20, "policy_age": 1, "risk": 0}, | |
{"last_premium_paid_date": (datetime.now() - timedelta(days=300)).strftime('%Y-%m-%d'), "payment_mode": "Annual", "policy_term": 15, "policy_age": 3, "risk": 1}, | |
{"last_premium_paid_date": (datetime.now() - timedelta(days=180)).strftime('%Y-%m-%d'), "payment_mode": "Quarterly", "policy_term": 18, "policy_age": 6, "risk": 0}, | |
]) | |
def encode_payment_mode(mode): | |
return {"Annual": 0, "Semi-Annual": 1, "Quarterly": 2, "Monthly": 3}.get(mode, -1) | |
def calculate_months_since(date_str): | |
try: | |
delta = datetime.now() - datetime.strptime(date_str, "%Y-%m-%d") | |
return delta.days // 30 | |
except: | |
return 0 | |
data["months_since_last_payment"] = data["last_premium_paid_date"].apply(calculate_months_since) | |
data["payment_mode_encoded"] = data["payment_mode"].apply(encode_payment_mode) | |
X = data[["months_since_last_payment", "payment_mode_encoded", "policy_term", "policy_age"]] | |
y = data["risk"] | |
model = xgb.XGBClassifier(use_label_encoder=False, eval_metric="logloss") | |
model.fit(X, y) | |
os.makedirs("model", exist_ok=True) | |
model.save_model("model/xgb_model.json") | |