Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python3 | |
""" | |
various routines for converting midi files to piano roll images and back | |
Unless otherwise noted: Author: Scott H. Hawley, Feb-March 2024 | |
""" | |
import os | |
import torch | |
import torchvision | |
import torchvision.transforms as transforms | |
from PIL import Image, ImageOps, ImageDraw, ImageFont | |
import numpy as np | |
import pretty_midi | |
import matplotlib.pyplot as plt | |
from .chords import chord_num_to_color, simplify_chord, CHORD_BORDER | |
from .utils import rect_to_square, square_to_rect | |
ONSET_STYLE = 'new' # 'old'=onset markers on pixels before notes, 'new'=onset markers are part of notes | |
def plot_piano_roll(pr_array): | |
plt.figure(figsize=(8, 8)) | |
plt.imshow(np.flipud(pr_array), aspect='auto') | |
plt.show() | |
def piano_roll_to_pretty_midi(piano_roll, fs=8, program=0): | |
# this routine copied from https://github.com/jsleep/pretty-midi/blob/ba7d01e5796fedf3ca0a3528e48b5242d9d2ccc3/examples/reverse_pianoroll.py | |
'''Convert a Piano Roll array into a PrettyMidi object | |
with a single instrument. | |
Parameters | |
---------- | |
piano_roll : np.ndarray, shape=(128,frames), dtype=int | |
Piano roll of one instrument | |
fs : int | |
Sampling frequency of the columns, i.e. each column is spaced apart | |
by ``1./fs`` seconds. | |
program : int | |
The program number of the instrument. | |
Returns | |
------- | |
midi_object : pretty_midi.PrettyMIDI | |
A pretty_midi.PrettyMIDI class instance describing | |
the piano roll. | |
''' | |
notes, frames = piano_roll.shape | |
#print("piano_roll.T[piano_roll.T != 0] = ",piano_roll.T[piano_roll.T != 0],flush=True) | |
pm = pretty_midi.PrettyMIDI() | |
instrument = pretty_midi.Instrument(program=program) | |
# pad 1 column of zeros so we can acknowledge inital and ending events | |
piano_roll = np.pad(piano_roll, [(0, 0), (1, 1)], 'constant') | |
# use changes in velocities to find note on / note off events | |
velocity_changes = np.nonzero(np.diff(piano_roll).T) | |
# keep track on velocities and note on times | |
prev_velocities = np.zeros(notes, dtype=int) | |
note_on_time = np.zeros(notes) | |
for time, note in zip(*velocity_changes): | |
# use time + 1 because of padding above | |
velocity = np.clip(piano_roll[note, time + 1], 0, 127) | |
#print("piano_roll[note, time + 1], velocity = ",piano_roll[note, time + 1], velocity,flush=True) | |
time = time / fs | |
if velocity > 0: | |
if prev_velocities[note] == 0: | |
note_on_time[note] = time | |
prev_velocities[note] = velocity | |
else: | |
pm_note = pretty_midi.Note( | |
velocity=prev_velocities[note], | |
pitch=note, | |
start=note_on_time[note], | |
end=time) | |
instrument.notes.append(pm_note) | |
prev_velocities[note] = 0 | |
pm.instruments.append(instrument) | |
return pm | |
#### beginning of code copied from midi2img.py | |
def find_first_note_start(midi): | |
"""find the start time of the first note in the midi file | |
used to help alignment to beats/bars | |
""" | |
first_start = 10000.0 | |
for instrument in midi.instruments: | |
for note in instrument.notes: | |
if note.start < first_start: | |
first_start = note.start | |
return first_start | |
def get_piano_rolls(midi, fs, remove_leading_silence=True, add_onsets=True, debug=False): | |
"""Converts a pretty_midi object to a piano roll for each instrument""" | |
duration = midi.get_end_time() # find out duration of the midi file | |
n_frames = int(np.ceil(duration * fs)) # calculate the number of frames | |
# create a piano roll for each instrument | |
# TODO: currently this is only setup for POP909 dataset, need to generalize for other datasets | |
piano_rolls = {'PIANO': np.zeros((128, n_frames)), | |
'MELODY': np.zeros((128, n_frames)), | |
'TOTAL': np.zeros((128, n_frames))} | |
if remove_leading_silence: | |
first_start = find_first_note_start(midi) | |
for instrument in midi.instruments: | |
name = instrument.name.upper() | |
if name in ['MELODY', 'PIANO']: | |
if debug: print(f"get_piano_rolls: instrument.name = {name}") | |
for note in instrument.notes: | |
if remove_leading_silence: | |
note.start -= first_start | |
note.end -= first_start | |
start = int(np.round(note.start * fs)) # quantize start time to nearest 16th note | |
dur = (note.end - note.start)*fs # quantize duration (Tip: don't separately quantize start & end; that can lead to "double-rounding" errors) | |
#end = int(np.round(note.end * fs)) | |
end = start + int(np.round(dur)) # round means some notes will get held a bit too long, but "floor" would err on the side of extra staccatto notes which I don't want | |
if end==start: end = start+1 # make sure note is at least 1 pixel long | |
piano_rolls[name][note.pitch, start:end] = note.velocity ## value of piano roll array for these pixels will be the note velocity. end+1 so that "end" index gets covered | |
piano_rolls['TOTAL'][note.pitch, start:end] = note.velocity | |
#if note.velocity in [65,59,49,100]: print("note = ",note) | |
# extra fun: make sure all note onsets pop | |
piano_rolls[name][note.pitch, start-1] = 0 | |
piano_rolls['TOTAL'][note.pitch, start-1] = 0 | |
# if remove_leading_silence and add_onsets: # we need to add one pixel for the red onset dot at the start | |
# for instrument in piano_rolls: | |
# piano_rolls[instrument] = np.insert(piano_rolls[instrument], 0, 0, axis=1) | |
return piano_rolls | |
def piano_roll_to_img(pr_frame, # this is an array of shape (128, n_frames) | |
output_dir, midi_name, instrument, | |
start_col=None, add_onsets=True, chords=None, chord_names=False, debug=False, | |
onset_style=ONSET_STYLE, # 'new' or 'old' | |
): | |
os.makedirs(f"{output_dir}/{midi_name}", exist_ok=True) | |
filename = f"{output_dir}/{midi_name}/{midi_name}_{instrument}.png" | |
if start_col is not None: | |
filename = filename.replace(".png",f"_{str(start_col).zfill(5)}.png") | |
#if debug: print("pr_frame.T[pr_frame.T != 0] = ",pr_frame.T[pr_frame.T != 0]) | |
#scaling_factor = 65 / 18 # found empiracally by lots of checking | |
#pr_frame = np.round(pr_frame * scaling_factor).astype(np.uint8) | |
scale_factor = 2 # velocity only goes up to 127, but colors go up to 255 | |
green_channel = np.clip(np.round(pr_frame*scale_factor), 0, 255).astype(np.uint8) | |
rgb_image = np.dstack((np.zeros_like(green_channel), green_channel, np.zeros_like(green_channel))) | |
img = Image.fromarray(rgb_image,'RGB') | |
if add_onsets: # add little onset markers (red dots) | |
if onset_style=='old': | |
# any black pixel that has a green pixel to its right is an onset. color it red | |
# note that x any are flipped from what you'd think, e.g. "img.size = (2352, 128)" | |
for y in range(img.size[-1]): | |
for x in range(img.size[0]-1): | |
if img.getpixel((x,y)) == (0,0,0) and img.getpixel((x+1,y)) != (0,0,0): | |
img.putpixel((x,y), (255,0,0)) | |
elif onset_style=='new': | |
# New version: | |
# any green pixel with a black pixel on its left becomes a red pixel. or if first pixel on row is green, make it red (matchinf velocity) | |
# Thus red pixel counts as both onset and first part of note, so shortest notes (16ths) will appear as only red with no green | |
# btw this seems to agree w/ polyffusion's approach (??) | |
for y in range(img.size[-1]): | |
x = 0 | |
pxl = img.getpixel((x,y)) | |
r,g,b = pxl | |
if is_green(*pxl): | |
img.putpixel((0,y), (g,0,0)) # make the first pixel of the note red, matching the green intensity | |
for x in range(1, img.size[0]): | |
pxl = img.getpixel((x,y)) | |
r,g,b = pxl | |
if is_green(*pxl) and is_black(*img.getpixel((x-1,y))): | |
img.putpixel((x,y), (g,0,0)) | |
else: | |
print(f"Error: Unrecognized onset_style = {onset_style}. Exiting.") | |
return | |
img = img.transpose(Image.FLIP_TOP_BOTTOM) # flip it vertically for display purposes | |
if chords is not None: # add the chord colors for each time as a rectangles at the top and bottom | |
if chord_names: | |
font_size = 7 | |
try: | |
myFont = ImageFont.truetype("arial.ttf", 7) #mac | |
except: | |
myFont = ImageFont.load_default(size=font_size) | |
for c in chords: | |
color = chord_num_to_color(c['chord_num']) | |
img.paste(color, (int(c['start']), img.size[-1]-CHORD_BORDER, int(c['end']), img.size[-1])) | |
img.paste(color, (int(c['start']), 0, int(c['end']), CHORD_BORDER)) | |
if chord_names: | |
chord_name = c['chord_name'].replace(':','') | |
if debug: print(f"chord_name = {chord_name}, chord_num = {c['chord_num']}") | |
xpos = int(c['start']) | |
I1 = ImageDraw.Draw(img) | |
I1.text((xpos, 0), chord_name, font=myFont, fill=(255, 255, 255)) | |
if debug: print("img.size = ",img.size) | |
if 0 in img.size: | |
print(f"Error: img.size = {img.size}. Skipping this file.") | |
return | |
# # just make sure all blue is gone: | |
# img_array = np.array(img) | |
# img_array[:, :, 2] = 0 | |
# img = Image.fromarray(img_array) | |
img.save(filename) | |
def check_for_melody_piano(midi: pretty_midi.PrettyMIDI, debug=False): | |
has_melody, has_piano = False, False | |
if debug: | |
print("check_for_melody_piano: midi.instruments = ",midi.instruments) | |
for i, instrument in enumerate(midi.instruments): | |
if debug: print(f"check_for_melody_piano: instrument = [{instrument.name.upper()}]") | |
if instrument.name.upper() == 'MELODY': has_melody = True | |
if instrument.name.upper() == 'PIANO': has_piano = True | |
# if theres only one instrument with no name, name it PIANO | |
if len(midi.instruments) == 1 and midi.instruments[0].name == '': | |
has_piano = True | |
midi.instruments[0].name = 'PIANO' | |
return has_melody, has_piano | |
def midi_to_pr_img(midi_file, output_dir, | |
show_chords=None, # to show chords or not | |
all_chords=None, # list of all possible chords | |
add_onsets=True, # add red dots for note onsets | |
chord_names=False, # to show chord names or not | |
filter_mp=True, # filter midi & piano | |
remove_leading_silence=True, # remove silence at start of song | |
simplify_chords=False, # simplify chord names | |
debug=False,): # show debugging info | |
"""Converts a MIDI file to a piano roll image""" | |
if debug: print(f"midi_to_pr_img: Processing {midi_file}") | |
if '/versions/' in midi_file and args.skip_versions: return | |
midi = pretty_midi.PrettyMIDI(midi_file) | |
if not check_for_melody_piano(midi): | |
print(f"Not ok: File {midi_file} does not have melody and piano. Skipping") | |
return | |
else: | |
if debug: print(f"Ok: File {midi_file} has melody and piano. Processing") | |
### Normalize tempo to 120bpm | |
tempo_changes = midi.get_tempo_changes() | |
start_tempo = tempo_changes[1][0] | |
bps = start_tempo / 60.0 | |
fs = bps * 4.0 * 2 | |
if debug: print("start_tempo, fs = ", start_tempo, fs) | |
chords=None | |
if show_chords and all_chords is not None: | |
# read the chord timing file, but note that those times have not yet been normalized to 120bpm | |
# this file has column-separated format "start_time end_time chord" | |
chords_path = midi_file.replace('.mid', '_chords.txt') | |
with open(chords_path) as f: | |
chords = f.read().splitlines() | |
# split each line of text into a dict 3 values {'start':, 'end':, 'chord':}: | |
chords = [dict(zip(['start', 'end', 'chord'], c.split('\t'))) for c in chords] | |
for c in chords: | |
c['start'] = int(np.floor(float(c['start']) * fs)) | |
c['end'] = int(np.ceil(float(c['end']) * fs)) | |
c['chord_name'] = simplify_chord(c['chord']) if simplify_chords else c['chord'] | |
c['chord_num'] = all_chords.index(c['chord_name']) | |
if filter_mp: # remove non-piano, non-melody instruments | |
midi.instruments = [instrument for instrument in midi.instruments if instrument.name.upper() in ['MELODY', 'PIANO']] | |
piano_rolls = get_piano_rolls(midi, fs, remove_leading_silence=remove_leading_silence, add_onsets=add_onsets) | |
if debug: | |
for p in piano_rolls.keys(): | |
print(f"p {p}.shape =",piano_rolls[p].shape) | |
#print(f"piano_rolls[{p}][piano_rolls[p] != 0] = ",piano_rolls[p][piano_rolls[p] != 0]) | |
midi_name = os.path.basename(midi_file).split('.')[0] # get the midi filename w/o parent dirs or file extension | |
for instrument in piano_rolls: # save each instrument's piano roll as a single image | |
if debug: print("saving piano roll for ",instrument) | |
piano_roll_to_img(piano_rolls[instrument], output_dir, midi_name, instrument, chords=chords, chord_names=chord_names, | |
add_onsets=add_onsets, debug=debug) | |
return | |
#### end of code copied from midi2img.py | |
#### below code originally in img2midi.py | |
def blockout_topbottom_arr(arr, border=CHORD_BORDER): | |
"set the top and bottom border pixels to black" | |
arr2 = arr.copy() | |
arr2[:border, :] = 0 | |
arr2[-border:, :] = 0 | |
return arr2 | |
def filter_by_velocity(midi, thresh=20): | |
"filter out notes with velocities below a certain threshold" | |
for instrument in midi.instruments: | |
notes = [note for note in instrument.notes if note.velocity > thresh] | |
instrument.notes = notes | |
return midi | |
def img2midi(img, draw_sep=512, debug=False): | |
# operates on a single image | |
# flip the image vertically because numpy and PIL have different ideas of what the first row is | |
# if image vertical dimension is more than 128, then cut it into strips of 128 and concatenate them horizontally | |
if debug: print(f"img2midi: img.size = {img.size}") | |
if img.size[1] > 128: | |
arr = np.concatenate([np.array(img.crop((0, i, img.size[0], i+128))) for i in range(0, img.size[1], 128)], axis=1) | |
else: | |
arr = np.array(img) | |
if debug: print("0: arr.T[arr.T != 0] = ",arr.T[arr.T != 0]) | |
arr = blockout_topbottom_arr(arr) | |
scale_factor = 0.5 # rgb down to velocity values | |
piano_roll_array = np.array(arr*scale_factor, dtype=np.int32) | |
piano_roll_array = np.flip(piano_roll_array, axis=0) # numpy as PIL are upside down relative to each other | |
if debug: | |
print(f"piano_roll_array.shape = {piano_roll_array.shape}, piano_roll_array.dtype = {piano_roll_array.dtype}") | |
print("1: piano_roll_array[piano_roll_array != 0] = ",piano_roll_array[piano_roll_array != 0]) | |
# draw a vertical line every 128/256/512 pixels | |
if draw_sep > 0: | |
line_every = draw_sep | |
for i in range(0, piano_roll_array.shape[-1], line_every): | |
if i>0: piano_roll_array[35:-35,i] = 30 | |
piano_roll_array = np.clip(piano_roll_array, 0, 127) # make sure velocities aren't out of bounds | |
midi = piano_roll_to_pretty_midi(piano_roll_array) | |
midi = filter_by_velocity(midi) | |
return midi | |
def flip_bottom_half_and_attach(sub_img): | |
"takes one 256x256 and returns on 512x128 image with the bottom half reversed and attached on the right" | |
h, w = sub_img.size | |
new_img = Image.new(sub_img.mode, (w*2, h//2)) | |
new_img.paste(sub_img.crop((0, 0, w, h//2)), (0, 0)) | |
new_img.paste(sub_img.crop((0, h//2, w, h)).transpose(Image.FLIP_LEFT_RIGHT), (w, 0)) | |
return new_img | |
def square_to_rect(img): | |
#"""just an alias for flip_bottom_half_and_attach""" | |
return flip_bottom_half_and_attach(img) | |
def rect_to_square(img): | |
"takes a 512x128 image and returns a 256x256 image with the bottom half reversed" | |
w, h = img.size | |
new_img = Image.new(img.mode, (w//2, h*2)) | |
new_img.paste(img.crop((0, 0, w//2, h)), (0, 0)) | |
new_img.paste(img.crop((w//2, 0, w, h)).transpose(Image.FLIP_LEFT_RIGHT), (0, h)) | |
return new_img | |
def regroup_lines(img, debug=False): | |
""" | |
large images come in as an 8x8 grid of 256x256 images, in which the bottom half of each 256x256 is horizontally backwards | |
we will rebuild this grid by first flipping the bottom half of each 256x256 image | |
""" | |
img2 = Image.new('RGB', img.size) | |
if debug: print(f"regroup_lines: img.size = {img.size}") | |
if img.size[0] == 256: | |
img2 = Image.new('RGB', (512,128)) | |
elif img.size[0] != 2048: | |
if debug: print("regroup_lines: unexpected image size, returning image unchanged") | |
return img # no op, hope all's well | |
imnum = 0 | |
for row in range(0, img.size[0], 256): | |
for col in range(0, img.size[1], 256): | |
imnum += 1 | |
sub_img = img.crop((col, row, col+256, row+256)) | |
sub_img = square_to_rect(sub_img) | |
paste_x, paste_y = (imnum-1) % 4 * 512, (imnum-1) // 4 * 128 | |
if debug: print(f"imnum = {imnum}, paste_x = {paste_x}, paste_y = {paste_y}") | |
img2.paste(sub_img, (paste_x, paste_y)) | |
if debug: img2.show() | |
return img2 | |
def is_red(r,g,b, thresh=20, debug=False): | |
result = r > thresh and g < thresh and b < thresh | |
if debug: print("is_red: r,g,b = ",r,g,b,", result = ",result) | |
return result | |
def is_green(r,g,b, thresh=20): | |
return r < thresh and g > thresh and b < thresh | |
def is_black(r,g,b, thresh=20): | |
return r < thresh and g < thresh and b < thresh | |
def filter_redgreen(img:Image, | |
require_onsets=True, # only keep green lines that start with a red pixel on the left | |
thresh=20, # minimum amount of red or green to count | |
onset_style=ONSET_STYLE, # 'new' or 'old | |
debug=False): | |
# filter: only keep black points, and green lines that start with a red pixel on the left. | |
# i.e. only green points that have red or green to their left are valid notes | |
# intended for img2midi | |
img.save('rgfilter_in.png') | |
img2 = img.copy() | |
if debug: print("img.size = ",img.size,", require_onsets = ",require_onsets," (not require_onsets) =",(not require_onsets)," thresh = ",thresh) | |
w, h = img.size | |
for y in range(CHORD_BORDER,h-CHORD_BORDER): | |
note_on = False | |
for x in range(w): # scan from right to left | |
r,g,b = img2.getpixel((x,y)) # pixel under consideration | |
if debug and (r,g,b)!=(0,0,0): print(f"x, y: {x}, {y}: r, g, b = {r},{g},{b}, note_on = {note_on}, is_red = {is_red(r,g,b, thresh)}, is_green = {is_green(r,g,b, thresh)}") | |
if is_red(r,g,b, thresh): | |
note_on = True | |
if onset_style == 'new': # keep the note but change the red to green | |
img2.putpixel((x,y), (0,r,0)) | |
elif is_green(r,g,b, thresh) and require_onsets and note_on: | |
img2.putpixel((x,y), (r,g,b)) # keep the note | |
elif is_green(r,g,b, thresh) and (not require_onsets): | |
img2.putpixel((x,y), (r,g,b)) # keep the note | |
note_on = True | |
else: | |
note_on = False | |
img2.putpixel((x,y), (0,0,0)) # zero it out | |
img2.save('rgfilter_out.png') # debugging always on here | |
return img2 | |
def arr_check(img, tag=''): | |
img = img.convert("RGB") | |
arr = np.array(img)[:,:,1] | |
print(tag,": arr.shape = ",arr.shape, flush=True) | |
print(tag,": arr.T[arr.T != 0] = ",arr.T[arr.T != 0], flush=True) | |
def img2midi_multi(img, require_onsets=True, separators=512, debug=False): | |
"can operate on a grid of images" | |
img = img.convert('RGB') | |
img = regroup_lines(img) | |
img = filter_redgreen(img, require_onsets=require_onsets) | |
#img = img.convert('L') # convert to grayscale | |
red_arr = np.array(img.split()[0]) | |
green_arr = np.array(img.split()[1]) | |
combined_arr = red_arr + green_arr | |
if debug: arr_check(img, '1') | |
img = Image.fromarray(combined_arr, mode="L") | |
if debug: arr_check(img, '2') | |
return img2midi(img, draw_sep=separators) | |
def infer_mask_from_init_img(img, mask_with='grey', debug=True): | |
"note, this works whether image is normalized on 0..1 or -1..1, but not 0..255" | |
assert mask_with in ['blue','white','grey'] | |
"given an image with mask areas marked, extract the mask itself" | |
img = np.array(img) | |
mask = np.zeros(img.shape[:2]) | |
if debug: print("infer: img.shape, mask.shape = ",img.shape, mask.shape) | |
if mask_with == 'white': | |
mask[ (img[0,:,:]==1) & (img[1,:,:]==1) & (img[2,:,:]==1)] = 1 | |
elif mask_with == 'blue': | |
mask[img[2,:,:]==1] = 1 # blue | |
if mask_with == 'grey': | |
mask[ (img[:,:,0] != 0) & (img[:,:,0] > -1) & (img[:,:,0]==img[:,:,1]) & (img[:,:,2]==img[:,:,1])] = 1 | |
return mask*1.0 | |
def img_file_2_midi_file(img_file, output_dir='', require_onsets=True, separators=512, | |
diff_img_file='', debug=True): | |
"Converts an image file to a midi file" | |
if debug: print(f"Processing {img_file}", flush=True) | |
img = Image.open(img_file) | |
if debug: arr_check(img, '0') | |
midi = img2midi_multi(img, require_onsets=require_onsets, separators=separators) | |
if diff_img_file != '': # put new notes on new instrument. | |
bg_img = rect_to_square(Image.open(diff_img_file)) | |
mask = infer_mask_from_init_img(bg_img, mask_with='grey') | |
# tile mask to 3 color channels | |
mask = np.stack([mask]*3, axis=-1) | |
if debug: | |
print("mask.shape = ",mask.shape, flush=True) | |
print("mask.min(), mask.max(), mask.sum() = ",mask.min(), mask.max(), mask.sum(), flush=True) | |
if bg_img.size[0] > img.size[0]: | |
bg_img = rect_to_square(bg_img) | |
bg_midi = img2midi_multi(bg_img, require_onsets=require_onsets, separators=separators) | |
# grab just the pixels in the mask of img | |
arr = np.array(img) | |
if debug: | |
print("arr.shape, mask.shape = ",arr.shape, mask.shape, flush=True) | |
print("arr.min(), arr.max(), arr.sum() = ",arr.min(), arr.max(), arr.sum(), flush=True) | |
new_arr = np.zeros_like(arr) | |
new_arr[mask > 0] = 1*255# arr[mask > 0] | |
new_arr = np.where(mask>0, arr, 0) | |
# new_arr[:,:,0] = arr[:,:,0] * mask | |
# new_arr[:,:,1] = arr[:,:,1] * mask | |
# new_arr[:,:,2] = arr[:,:,2] * mask | |
new_img = Image.fromarray(new_arr, 'RGB') | |
square_to_rect(new_img).save('new_img.png') | |
new_midi = img2midi_multi(new_img, require_onsets=require_onsets, separators=separators) | |
bg_midi.instruments.append(new_midi.instruments[0]) | |
midi = bg_midi | |
midi_file = os.path.basename(img_file).replace('.png', '.mid') | |
if output_dir is not None and output_dir != '': | |
midi_file = os.path.join(output_dir, midi_file) | |
midi.write(midi_file) | |
return midi_file | |
#### end of code copied from img2midi.py | |
### dataset routines, called from train.h | |
class RandomVerticalShift(torch.nn.Module): | |
""" | |
Update: UNUSED. Instead we do all transposing as pre-processing to facilitate chord detection. | |
Randomly shift the image vertically by up to max_shift pixels, which correspond to semitones. | |
""" | |
def __init__(self, max_shift=12): | |
super().__init__() | |
self.max_shift = max_shift | |
def __call__(self, img): | |
shift = torch.randint(-self.max_shift, self.max_shift, (1,)) | |
return self.vertical_shift(img, shift.item()) | |
def vertical_shift(self, img, shift): | |
img = ImageOps.exif_transpose(img) # Handle EXIF Orientation | |
img = img.transform(img.size, Image.AFFINE, (1, 0, 0, 0, 1, shift), fillcolor=0) | |
return img | |
class RandomBarCrop(torch.nn.Module): | |
""" | |
Given a PIL image of a piano roll (non-square!), do random cropping the level of measures, i.e. bars, i.e. 16 16th-note pixels | |
NOTE: might be nice if piano roll images have initial silence pre-removed -- assuming the first note is supposed to start on the first beat | |
""" | |
def __init__(self, bar_length=16, window_length=512): | |
super().__init__() | |
self.bl = bar_length # in 16th notes (16 pixels) | |
self.wl = window_length # in pixels | |
self.bic = self.wl // self.bl # bars in crop | |
def __call__(self, img: Image, debug=False): | |
bars_in_image = img.size[0] // self.bl # number of bars in full image | |
if self.bic >= bars_in_image: # pad horizontal end of image with zeros if needed | |
pad = self.wl - img.size[0] + 1 | |
img = ImageOps.expand(img, (0, 0, pad, 0), fill=0) | |
bars_in_image = img.size[0] // self.bl | |
try: | |
start_ind = torch.randint(0, bars_in_image - self.bic+1, (1,)).item() # start index of crop | |
except Exception as e: | |
print(f"***MY ERROR: {e}. bars_in_image = {bars_in_image}, self.bic = {self.bic}") | |
assert False | |
start_pixel = start_ind * self.bl # start pixel of crop | |
new_img = img.crop((start_pixel, 0, start_pixel + self.wl, img.size[1])) | |
assert new_img.size[0] == self.wl and new_img.size[1]==128, f"ERROR: new_img.size = {new_img.size}, self.wl = {self.wl}" | |
return new_img | |
class StackPianoRollsImage(torch.nn.Module): | |
""" | |
Given a PIL image of a piano roll, cut in in half horizontally, | |
stack the two halves, with the lower half mirrored horzontally. | |
""" | |
def __init__(self, final_size=(256, 256), max_shift=13): | |
super().__init__() | |
self.final_size = final_size | |
def __call__(self, img: Image, debug=False): | |
if img.size[0] <= 128 and img.size[1] <= 128: | |
return img # don't stack small images | |
# image dimensions are likely 512x128. I want 256x256 output | |
half_width = img.size[0] // 2 | |
#make a new image with dimensions 256x256, with the same color mode as img | |
new_img = Image.new(img.mode, self.final_size) | |
# paste the first half of the image into the top half of the new image | |
first_half = img.crop((0, 0, half_width, img.size[1])) | |
new_img.paste(first_half, (0, 0)) | |
# paste the second half of the image into the bottom half of the new image, but flipped horizontally | |
next_half = img.crop((half_width, 0, 2*half_width, img.size[1])) | |
next_half = ImageOps.mirror(next_half) | |
new_img.paste(next_half, (0, img.size[1])) | |
return new_img | |
class StackPianoRollsTensor(torch.nn.Module): | |
""" | |
Tensor version of StackPianoRollsImage. Unused, i think. | |
Given a torch tensor of a piano roll, cut in in half horizontally, stack the two halves | |
but have the bottom half mirrored horzontally. | |
""" | |
def __init__(self): | |
super().__init__() | |
def __call__(self, img: torch.Tensor): | |
if img.shape[0] <= 128 and img.shape[1] <= 128: | |
return img # don't stack small images | |
img = img.permute(1, 2, 0) | |
half_width = img.shape[0] // 2 | |
img = torch.cat([img[:half_width], img[half_width:][::-1]], dim=0) | |
img = img.permute(2, 0, 1) | |
return img | |
if __name__ == '__main__': | |
import sys | |
# testing for the StackPianoRollsImage class | |
filename = sys.argv[-1] | |
print("filename = ", filename) | |
img = Image.open(filename) | |
img = transforms.RandomCrop((128, 512))(img) # randomly crop it to 128x512 | |
img = StackPianoRollsImage()(img, debug=True) | |
img.show() | |