drscotthawley commited on
Commit
6dfde8b
·
1 Parent(s): caabda6

added more code

Browse files
Files changed (7) hide show
  1. app.py +35 -0
  2. find_min_max_notes.py +44 -0
  3. img2midi.py +51 -0
  4. midi2img.py +88 -0
  5. pianoroll.py +634 -0
  6. rect_to_square.py +26 -0
  7. square_to_rect.py +31 -0
app.py CHANGED
@@ -25,6 +25,41 @@ from torchvision import transforms
25
  import k_diffusion as K
26
 
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  def greet(name):
29
  return "Hello " + name + "!!"
30
 
 
25
  import k_diffusion as K
26
 
27
 
28
+ from .pianoroll import regroup_lines, img_file_2_midi_file, square_to_rect, rect_to_square
29
+ from .square_to_rect import square_to_rect
30
+
31
+
32
+
33
+ def infer_mask_from_init_img(img, mask_with='grey'):
34
+ "note, this works whether image is normalized on 0..1 or -1..1, but not 0..255"
35
+ assert mask_with in ['blue','white','grey']
36
+ "given an image with mask areas marked, extract the mask itself"
37
+ if not torch.is_tensor(img):
38
+ img = ToTensor()(img)
39
+ print("img.shape: ", img.shape)
40
+ # shape of mask should be img shape without the channel dimension
41
+ if len(img.shape) == 3:
42
+ mask = torch.zeros(img.shape[-2:])
43
+ elif len(img.shape) == 2:
44
+ mask = torch.zeros(img.shape)
45
+ print("mask.shape: ", mask.shape)
46
+ if mask_with == 'white':
47
+ mask[ (img[0,:,:]==1) & (img[1,:,:]==1) & (img[2,:,:]==1)] = 1
48
+ elif mask_with == 'blue':
49
+ mask[img[2,:,:]==1] = 1 # blue
50
+ if mask_with == 'grey':
51
+ mask[ (img[0,:,:] != 0) & (img[0,:,:]==img[1,:,:]) & (img[2,:,:]==img[1,:,:])] = 1
52
+ return mask*1.0
53
+
54
+
55
+ def count_notes_in_mask(img, mask):
56
+ "counts the number of new notes in the mask"
57
+ img_t = ToTensor()(img)
58
+ new_notes = (mask * (img_t[1,:,:] > 0)).sum() # green channel
59
+ return new_notes.item()
60
+
61
+
62
+
63
  def greet(name):
64
  return "Hello " + name + "!!"
65
 
find_min_max_notes.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ # this routine reads in many image files which are 128 pixels high
4
+ # and finds the lowest and highest non-black pixels across all images
5
+ import sys
6
+ from PIL import Image
7
+ from control_toys.data import fast_scandir
8
+ from tqdm import tqdm
9
+
10
+ if __name__ == "__main__":
11
+ if len(sys.argv) < 2:
12
+ print(f"Usage: {sys.argv[0]} <image-dirs>")
13
+ sys.exit(1)
14
+
15
+ img_dirs = sys.argv[1:]
16
+
17
+ img_files = []
18
+ for imgdir in img_dirs:
19
+ i_subdirs, imfile = fast_scandir(imgdir, ['png', 'jpg', 'jpeg'])
20
+ if imfile != []: img_files = img_files + imfile
21
+
22
+ # remove any files with the 'transpose' in the name
23
+ img_files = [f for f in img_files if 'transpose' not in f]
24
+
25
+ if len(img_files) == 0:
26
+ print(f"No image files found in {img_dirs}")
27
+ sys.exit(1)
28
+
29
+ min_note = 128
30
+ max_note = 0
31
+ for img_file in tqdm(img_files):
32
+ img = Image.open(img_file)
33
+ img = img.convert('L')
34
+ for y in range(img.size[-1]):
35
+ for x in range(img.size[0]):
36
+ val = img.getpixel((x,y))
37
+ if val > 0:
38
+ if y < min_note: min_note = y
39
+ if y > max_note: max_note = y
40
+ break
41
+ print(f"min_note = {min_note}, max_note = {max_note}")
42
+ transpose_max = 12
43
+ print(f"So with transpostion of +/-{transpose_max}, the range is", min_note-transpose_max, "to", max_note+transpose_max)
44
+ sys.exit(0)
img2midi.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #! /usr/bin/env python3
2
+
3
+ # This script takes piano roll image files and converts them to MIDI
4
+ # It was intended for the P909 dataset
5
+ # It will create a directory of images for each MIDI file, where each image is a frame of the MIDI file
6
+
7
+ import os
8
+ import sys
9
+ import pretty_midi
10
+ import argparse
11
+ from multiprocessing import Pool, cpu_count
12
+ from tqdm import tqdm
13
+ from control_toys.data import fast_scandir
14
+ from functools import partial
15
+ from control_toys.pianoroll import img_file_2_midi_file
16
+
17
+ if __name__ == '__main__':
18
+ p = argparse.ArgumentParser(description=__doc__,
19
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter)
20
+ # use --no-onsets to disable requirment of onsets
21
+ p.add_argument('--diff', default='', help='diff against this background image, new notes go in instrument 2')
22
+ p.add_argument('--onsets', action=argparse.BooleanOptionalAction, default=True)
23
+ p.add_argument('--separators', default=0, type=int, help='draw separators every this many pixels. (0=none)')
24
+ p.add_argument("img_dirs", nargs='+', help="directories containing image files")
25
+ p.add_argument("output_dir", help="output directory")
26
+ args = p.parse_args()
27
+ #print('args = ',args)
28
+
29
+ img_dirs = args.img_dirs
30
+ output_dir = args.output_dir
31
+
32
+
33
+ if not os.path.exists(output_dir):
34
+ os.makedirs(output_dir)
35
+
36
+ img_files = []
37
+ if os.path.isfile(img_dirs[0]):
38
+ img_files = img_dirs
39
+ else:
40
+ for imgdir in img_dirs:
41
+ i_subdirs, imfile = fast_scandir(imgdir, ['png', 'jpg', 'jpeg'])
42
+ if imfile != []: img_files = img_files + imfile
43
+ if len(img_files) == 0:
44
+ print(f"No image files found in {img_dirs}")
45
+ sys.exit(1)
46
+
47
+ process_one = partial(img_file_2_midi_file, output_dir=output_dir, require_onsets=args.onsets,
48
+ separators=args.separators, diff_img_file=args.diff)
49
+ cpus = cpu_count()
50
+ with Pool(cpus) as p:
51
+ list(tqdm(p.imap(process_one, img_files), total=len(img_files), desc='Processing image files'))
midi2img.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #! /usr/bin/env python3
2
+
3
+ # This script takes a directory of MIDI files and converts them to images
4
+ # It was intended for the P909 dataset
5
+ # It will create a directory of images for each MIDI file, where each image is a frame of the MIDI file
6
+
7
+ # if you want to use the chord extractor, you need to run chord extractor on all the files, and then output
8
+ # a list of all the unique chord names to all_chords.txt e.g.
9
+ # $ cat ~/datasets/jsb_chorales_midi/*/*_chords.txt | awk -F'\t' '{print $3}' | sort | uniq -c | awk '{print $2}' > all_chords.txt
10
+ # cat midis/*_chords.txt | awk -F'\t' '{print $3}' | sort | uniq -c | awk '{print $2}' > all_chords.txt
11
+ # find midis -name '*_chords.txt' -exec cat {} + | awk -F'\t' '{print $3}' | sort | uniq -c | awk '{print $2}' > all_chords.txt
12
+
13
+ import os
14
+ import sys
15
+ from multiprocessing import Pool, cpu_count, set_start_method
16
+ from tqdm import tqdm
17
+ from control_toys.data import fast_scandir
18
+ from functools import partial
19
+ import argparse
20
+ from control_toys.pianoroll import midi_to_pr_img
21
+ from control_toys.chords import simplify_chord, POSSIBLE_CHORDS
22
+
23
+ def wrapper(args, midi_file, all_chords=None):
24
+ return midi_to_pr_img(midi_file, args.output_dir, show_chords=args.chords, all_chords=all_chords,
25
+ chord_names=args.chord_names, filter_mp=args.filter_mp, add_onsets=args.onsets,
26
+ remove_leading_silence=(not args.silence))
27
+
28
+
29
+ if __name__ == '__main__':
30
+ p = argparse.ArgumentParser(description=__doc__,
31
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter)
32
+ p.add_argument('-c','--chords', action='store_true', help='infer chords and add markers')
33
+ p.add_argument('--chord-names', action='store_true', help='Add text for chord names')
34
+ p.add_argument('--filter-mp', default=True, help='filter out non-piano, non-melody instruments')
35
+ #p.add_argument('--onsets', default=True, type=bool, help='add onset markers')
36
+ p.add_argument('--onsets', default=True, action=argparse.BooleanOptionalAction, help='Produce onset markers') # either --onsets or --no-onsets, default is...?
37
+ p.add_argument('--silence', default=True, action=argparse.BooleanOptionalAction, help='Leave silence at start of song (True) or remove it (False)')
38
+ p.add_argument('--start-method', type=str, default='fork',
39
+ choices=['fork', 'forkserver', 'spawn'],
40
+ help='the multiprocessing start method')
41
+ p.add_argument('--simplify', action='store_true', help='Simplify chord types, e.g. remove 13s')
42
+ p.add_argument('--skip-versions', default=True, help='skip extra versions of the same song')
43
+ p.add_argument("midi_dirs", nargs='+', help="directories containing MIDI files")
44
+ p.add_argument("output_dir", help="output directory")
45
+ args = p.parse_args()
46
+ print("args = ",args)
47
+
48
+ set_start_method(args.start_method)
49
+ midi_dirs, output_dir = args.midi_dirs, args.output_dir
50
+
51
+ if not os.path.exists(output_dir):
52
+ os.makedirs(output_dir)
53
+
54
+ if os.path.isdir(midi_dirs[0]):
55
+ midi_files = []
56
+ for mdir in midi_dirs:
57
+ m_subdirs, mf = fast_scandir(mdir, ['mid', 'midi'])
58
+ if mf != []: midi_files = midi_files + mf
59
+ elif os.path.isfile(midi_dirs[0]):
60
+ midi_files = midi_dirs
61
+
62
+
63
+ if args.skip_versions:
64
+ midi_files = [f for f in midi_files if '/versions/' not in f]
65
+ print("len(midi_files) = ",len(midi_files)) # just a check for debugging
66
+
67
+ if args.chords:
68
+ # TODO: this is janky af but for now...
69
+ # Get a list of all unique chords from a premade text file list of possible chords
70
+ # to make the file in bash, assuming you've already run extract_chords.py: (leave sort alphabetical, don't sort in order of freq)
71
+ # cat */*_chords.txt | awk -F'\t' '{print $3}' | sort | uniq -c | awk '{print $2}' > all_chords.txt
72
+ #with open('all_chords.txt') as f:
73
+ # all_chords = f.read().splitlines()
74
+ # use possible chords as all chords
75
+ all_chords = POSSIBLE_CHORDS # now we just generate these
76
+ if args.simplify:
77
+ all_chords = list(set([simplify_chord(c) for c in all_chords]))
78
+ print("len(all_chords) = ",len(all_chords))
79
+ print("all_chords = ",all_chords) # just a check for debugging
80
+ else:
81
+ all_chords = None
82
+
83
+ process_one = partial(wrapper, args, all_chords=all_chords)
84
+ num_cpus = cpu_count()
85
+ with Pool(num_cpus) as p:
86
+ list(tqdm(p.imap(process_one, midi_files), total=len(midi_files), desc='Processing MIDI files'))
87
+
88
+ print("Finished")
pianoroll.py ADDED
@@ -0,0 +1,634 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ """
4
+ various routines for converting midi files to piano roll images and back
5
+ Unless otherwise noted: Author: Scott H. Hawley, Feb-March 2024
6
+ """
7
+
8
+ import os
9
+ import torch
10
+ import torchvision
11
+ import torchvision.transforms as transforms
12
+ from PIL import Image, ImageOps, ImageDraw, ImageFont
13
+ import numpy as np
14
+ import pretty_midi
15
+ import matplotlib.pyplot as plt
16
+ from .chords import chord_num_to_color, simplify_chord, CHORD_BORDER
17
+ from .utils import rect_to_square, square_to_rect
18
+
19
+ ONSET_STYLE = 'new' # 'old'=onset markers on pixels before notes, 'new'=onset markers are part of notes
20
+
21
+ def plot_piano_roll(pr_array):
22
+ plt.figure(figsize=(8, 8))
23
+ plt.imshow(np.flipud(pr_array), aspect='auto')
24
+ plt.show()
25
+
26
+
27
+
28
+ def piano_roll_to_pretty_midi(piano_roll, fs=8, program=0):
29
+ # this routine copied from https://github.com/jsleep/pretty-midi/blob/ba7d01e5796fedf3ca0a3528e48b5242d9d2ccc3/examples/reverse_pianoroll.py
30
+ '''Convert a Piano Roll array into a PrettyMidi object
31
+ with a single instrument.
32
+
33
+ Parameters
34
+ ----------
35
+ piano_roll : np.ndarray, shape=(128,frames), dtype=int
36
+ Piano roll of one instrument
37
+ fs : int
38
+ Sampling frequency of the columns, i.e. each column is spaced apart
39
+ by ``1./fs`` seconds.
40
+ program : int
41
+ The program number of the instrument.
42
+
43
+ Returns
44
+ -------
45
+ midi_object : pretty_midi.PrettyMIDI
46
+ A pretty_midi.PrettyMIDI class instance describing
47
+ the piano roll.
48
+
49
+ '''
50
+ notes, frames = piano_roll.shape
51
+ #print("piano_roll.T[piano_roll.T != 0] = ",piano_roll.T[piano_roll.T != 0],flush=True)
52
+ pm = pretty_midi.PrettyMIDI()
53
+ instrument = pretty_midi.Instrument(program=program)
54
+
55
+ # pad 1 column of zeros so we can acknowledge inital and ending events
56
+ piano_roll = np.pad(piano_roll, [(0, 0), (1, 1)], 'constant')
57
+
58
+ # use changes in velocities to find note on / note off events
59
+ velocity_changes = np.nonzero(np.diff(piano_roll).T)
60
+
61
+ # keep track on velocities and note on times
62
+ prev_velocities = np.zeros(notes, dtype=int)
63
+ note_on_time = np.zeros(notes)
64
+
65
+ for time, note in zip(*velocity_changes):
66
+ # use time + 1 because of padding above
67
+ velocity = np.clip(piano_roll[note, time + 1], 0, 127)
68
+ #print("piano_roll[note, time + 1], velocity = ",piano_roll[note, time + 1], velocity,flush=True)
69
+ time = time / fs
70
+ if velocity > 0:
71
+ if prev_velocities[note] == 0:
72
+ note_on_time[note] = time
73
+ prev_velocities[note] = velocity
74
+ else:
75
+ pm_note = pretty_midi.Note(
76
+ velocity=prev_velocities[note],
77
+ pitch=note,
78
+ start=note_on_time[note],
79
+ end=time)
80
+ instrument.notes.append(pm_note)
81
+ prev_velocities[note] = 0
82
+ pm.instruments.append(instrument)
83
+ return pm
84
+
85
+
86
+
87
+ #### beginning of code copied from midi2img.py
88
+
89
+ def find_first_note_start(midi):
90
+ """find the start time of the first note in the midi file
91
+ used to help alignment to beats/bars
92
+ """
93
+ first_start = 10000.0
94
+ for instrument in midi.instruments:
95
+ for note in instrument.notes:
96
+ if note.start < first_start:
97
+ first_start = note.start
98
+ return first_start
99
+
100
+
101
+ def get_piano_rolls(midi, fs, remove_leading_silence=True, add_onsets=True, debug=False):
102
+ """Converts a pretty_midi object to a piano roll for each instrument"""
103
+ duration = midi.get_end_time() # find out duration of the midi file
104
+ n_frames = int(np.ceil(duration * fs)) # calculate the number of frames
105
+
106
+ # create a piano roll for each instrument
107
+ # TODO: currently this is only setup for POP909 dataset, need to generalize for other datasets
108
+ piano_rolls = {'PIANO': np.zeros((128, n_frames)),
109
+ 'MELODY': np.zeros((128, n_frames)),
110
+ 'TOTAL': np.zeros((128, n_frames))}
111
+ if remove_leading_silence:
112
+ first_start = find_first_note_start(midi)
113
+
114
+ for instrument in midi.instruments:
115
+ name = instrument.name.upper()
116
+ if name in ['MELODY', 'PIANO']:
117
+ if debug: print(f"get_piano_rolls: instrument.name = {name}")
118
+ for note in instrument.notes:
119
+ if remove_leading_silence:
120
+ note.start -= first_start
121
+ note.end -= first_start
122
+ start = int(np.round(note.start * fs)) # quantize start time to nearest 16th note
123
+ dur = (note.end - note.start)*fs # quantize duration (Tip: don't separately quantize start & end; that can lead to "double-rounding" errors)
124
+ #end = int(np.round(note.end * fs))
125
+ end = start + int(np.round(dur)) # round means some notes will get held a bit too long, but "floor" would err on the side of extra staccatto notes which I don't want
126
+ if end==start: end = start+1 # make sure note is at least 1 pixel long
127
+ piano_rolls[name][note.pitch, start:end] = note.velocity ## value of piano roll array for these pixels will be the note velocity. end+1 so that "end" index gets covered
128
+ piano_rolls['TOTAL'][note.pitch, start:end] = note.velocity
129
+ #if note.velocity in [65,59,49,100]: print("note = ",note)
130
+
131
+ # extra fun: make sure all note onsets pop
132
+ piano_rolls[name][note.pitch, start-1] = 0
133
+ piano_rolls['TOTAL'][note.pitch, start-1] = 0
134
+
135
+ # if remove_leading_silence and add_onsets: # we need to add one pixel for the red onset dot at the start
136
+ # for instrument in piano_rolls:
137
+ # piano_rolls[instrument] = np.insert(piano_rolls[instrument], 0, 0, axis=1)
138
+
139
+ return piano_rolls
140
+
141
+
142
+ def piano_roll_to_img(pr_frame, # this is an array of shape (128, n_frames)
143
+ output_dir, midi_name, instrument,
144
+ start_col=None, add_onsets=True, chords=None, chord_names=False, debug=False,
145
+ onset_style=ONSET_STYLE, # 'new' or 'old'
146
+ ):
147
+ os.makedirs(f"{output_dir}/{midi_name}", exist_ok=True)
148
+ filename = f"{output_dir}/{midi_name}/{midi_name}_{instrument}.png"
149
+ if start_col is not None:
150
+ filename = filename.replace(".png",f"_{str(start_col).zfill(5)}.png")
151
+ #if debug: print("pr_frame.T[pr_frame.T != 0] = ",pr_frame.T[pr_frame.T != 0])
152
+ #scaling_factor = 65 / 18 # found empiracally by lots of checking
153
+ #pr_frame = np.round(pr_frame * scaling_factor).astype(np.uint8)
154
+
155
+ scale_factor = 2 # velocity only goes up to 127, but colors go up to 255
156
+ green_channel = np.clip(np.round(pr_frame*scale_factor), 0, 255).astype(np.uint8)
157
+ rgb_image = np.dstack((np.zeros_like(green_channel), green_channel, np.zeros_like(green_channel)))
158
+ img = Image.fromarray(rgb_image,'RGB')
159
+
160
+ if add_onsets: # add little onset markers (red dots)
161
+ if onset_style=='old':
162
+ # any black pixel that has a green pixel to its right is an onset. color it red
163
+ # note that x any are flipped from what you'd think, e.g. "img.size = (2352, 128)"
164
+ for y in range(img.size[-1]):
165
+ for x in range(img.size[0]-1):
166
+ if img.getpixel((x,y)) == (0,0,0) and img.getpixel((x+1,y)) != (0,0,0):
167
+ img.putpixel((x,y), (255,0,0))
168
+ elif onset_style=='new':
169
+ # New version:
170
+ # any green pixel with a black pixel on its left becomes a red pixel. or if first pixel on row is green, make it red (matchinf velocity)
171
+ # Thus red pixel counts as both onset and first part of note, so shortest notes (16ths) will appear as only red with no green
172
+ # btw this seems to agree w/ polyffusion's approach (??)
173
+ for y in range(img.size[-1]):
174
+ x = 0
175
+ pxl = img.getpixel((x,y))
176
+ r,g,b = pxl
177
+ if is_green(*pxl):
178
+ img.putpixel((0,y), (g,0,0)) # make the first pixel of the note red, matching the green intensity
179
+ for x in range(1, img.size[0]):
180
+ pxl = img.getpixel((x,y))
181
+ r,g,b = pxl
182
+ if is_green(*pxl) and is_black(*img.getpixel((x-1,y))):
183
+ img.putpixel((x,y), (g,0,0))
184
+ else:
185
+ print(f"Error: Unrecognized onset_style = {onset_style}. Exiting.")
186
+ return
187
+
188
+ img = img.transpose(Image.FLIP_TOP_BOTTOM) # flip it vertically for display purposes
189
+
190
+
191
+ if chords is not None: # add the chord colors for each time as a rectangles at the top and bottom
192
+ if chord_names:
193
+ font_size = 7
194
+ try:
195
+ myFont = ImageFont.truetype("arial.ttf", 7) #mac
196
+ except:
197
+ myFont = ImageFont.load_default(size=font_size)
198
+
199
+
200
+ for c in chords:
201
+ color = chord_num_to_color(c['chord_num'])
202
+ img.paste(color, (int(c['start']), img.size[-1]-CHORD_BORDER, int(c['end']), img.size[-1]))
203
+ img.paste(color, (int(c['start']), 0, int(c['end']), CHORD_BORDER))
204
+ if chord_names:
205
+ chord_name = c['chord_name'].replace(':','')
206
+ if debug: print(f"chord_name = {chord_name}, chord_num = {c['chord_num']}")
207
+ xpos = int(c['start'])
208
+ I1 = ImageDraw.Draw(img)
209
+ I1.text((xpos, 0), chord_name, font=myFont, fill=(255, 255, 255))
210
+
211
+ if debug: print("img.size = ",img.size)
212
+ if 0 in img.size:
213
+ print(f"Error: img.size = {img.size}. Skipping this file.")
214
+ return
215
+
216
+ # # just make sure all blue is gone:
217
+ # img_array = np.array(img)
218
+ # img_array[:, :, 2] = 0
219
+ # img = Image.fromarray(img_array)
220
+
221
+ img.save(filename)
222
+
223
+
224
+
225
+ def check_for_melody_piano(midi: pretty_midi.PrettyMIDI, debug=False):
226
+ has_melody, has_piano = False, False
227
+ if debug:
228
+ print("check_for_melody_piano: midi.instruments = ",midi.instruments)
229
+ for i, instrument in enumerate(midi.instruments):
230
+ if debug: print(f"check_for_melody_piano: instrument = [{instrument.name.upper()}]")
231
+ if instrument.name.upper() == 'MELODY': has_melody = True
232
+ if instrument.name.upper() == 'PIANO': has_piano = True
233
+ # if theres only one instrument with no name, name it PIANO
234
+ if len(midi.instruments) == 1 and midi.instruments[0].name == '':
235
+ has_piano = True
236
+ midi.instruments[0].name = 'PIANO'
237
+ return has_melody, has_piano
238
+
239
+
240
+
241
+ def midi_to_pr_img(midi_file, output_dir,
242
+ show_chords=None, # to show chords or not
243
+ all_chords=None, # list of all possible chords
244
+ add_onsets=True, # add red dots for note onsets
245
+ chord_names=False, # to show chord names or not
246
+ filter_mp=True, # filter midi & piano
247
+ remove_leading_silence=True, # remove silence at start of song
248
+ simplify_chords=False, # simplify chord names
249
+ debug=False,): # show debugging info
250
+ """Converts a MIDI file to a piano roll image"""
251
+ if debug: print(f"midi_to_pr_img: Processing {midi_file}")
252
+ if '/versions/' in midi_file and args.skip_versions: return
253
+ midi = pretty_midi.PrettyMIDI(midi_file)
254
+
255
+ if not check_for_melody_piano(midi):
256
+ print(f"Not ok: File {midi_file} does not have melody and piano. Skipping")
257
+ return
258
+ else:
259
+ if debug: print(f"Ok: File {midi_file} has melody and piano. Processing")
260
+
261
+ ### Normalize tempo to 120bpm
262
+ tempo_changes = midi.get_tempo_changes()
263
+ start_tempo = tempo_changes[1][0]
264
+ bps = start_tempo / 60.0
265
+ fs = bps * 4.0 * 2
266
+ if debug: print("start_tempo, fs = ", start_tempo, fs)
267
+
268
+ chords=None
269
+ if show_chords and all_chords is not None:
270
+ # read the chord timing file, but note that those times have not yet been normalized to 120bpm
271
+ # this file has column-separated format "start_time end_time chord"
272
+ chords_path = midi_file.replace('.mid', '_chords.txt')
273
+ with open(chords_path) as f:
274
+ chords = f.read().splitlines()
275
+ # split each line of text into a dict 3 values {'start':, 'end':, 'chord':}:
276
+ chords = [dict(zip(['start', 'end', 'chord'], c.split('\t'))) for c in chords]
277
+
278
+ for c in chords:
279
+ c['start'] = int(np.floor(float(c['start']) * fs))
280
+ c['end'] = int(np.ceil(float(c['end']) * fs))
281
+ c['chord_name'] = simplify_chord(c['chord']) if simplify_chords else c['chord']
282
+ c['chord_num'] = all_chords.index(c['chord_name'])
283
+
284
+ if filter_mp: # remove non-piano, non-melody instruments
285
+ midi.instruments = [instrument for instrument in midi.instruments if instrument.name.upper() in ['MELODY', 'PIANO']]
286
+
287
+ piano_rolls = get_piano_rolls(midi, fs, remove_leading_silence=remove_leading_silence, add_onsets=add_onsets)
288
+ if debug:
289
+ for p in piano_rolls.keys():
290
+ print(f"p {p}.shape =",piano_rolls[p].shape)
291
+ #print(f"piano_rolls[{p}][piano_rolls[p] != 0] = ",piano_rolls[p][piano_rolls[p] != 0])
292
+
293
+ midi_name = os.path.basename(midi_file).split('.')[0] # get the midi filename w/o parent dirs or file extension
294
+
295
+ for instrument in piano_rolls: # save each instrument's piano roll as a single image
296
+ if debug: print("saving piano roll for ",instrument)
297
+ piano_roll_to_img(piano_rolls[instrument], output_dir, midi_name, instrument, chords=chords, chord_names=chord_names,
298
+ add_onsets=add_onsets, debug=debug)
299
+
300
+ return
301
+
302
+ #### end of code copied from midi2img.py
303
+
304
+
305
+ #### below code originally in img2midi.py
306
+
307
+ def blockout_topbottom_arr(arr, border=CHORD_BORDER):
308
+ "set the top and bottom border pixels to black"
309
+ arr2 = arr.copy()
310
+ arr2[:border, :] = 0
311
+ arr2[-border:, :] = 0
312
+ return arr2
313
+
314
+ def filter_by_velocity(midi, thresh=20):
315
+ "filter out notes with velocities below a certain threshold"
316
+ for instrument in midi.instruments:
317
+ notes = [note for note in instrument.notes if note.velocity > thresh]
318
+ instrument.notes = notes
319
+ return midi
320
+
321
+ def img2midi(img, draw_sep=512, debug=False):
322
+ # operates on a single image
323
+ # flip the image vertically because numpy and PIL have different ideas of what the first row is
324
+ # if image vertical dimension is more than 128, then cut it into strips of 128 and concatenate them horizontally
325
+ if debug: print(f"img2midi: img.size = {img.size}")
326
+ if img.size[1] > 128:
327
+ arr = np.concatenate([np.array(img.crop((0, i, img.size[0], i+128))) for i in range(0, img.size[1], 128)], axis=1)
328
+ else:
329
+ arr = np.array(img)
330
+ if debug: print("0: arr.T[arr.T != 0] = ",arr.T[arr.T != 0])
331
+ arr = blockout_topbottom_arr(arr)
332
+
333
+ scale_factor = 0.5 # rgb down to velocity values
334
+ piano_roll_array = np.array(arr*scale_factor, dtype=np.int32)
335
+ piano_roll_array = np.flip(piano_roll_array, axis=0) # numpy as PIL are upside down relative to each other
336
+ if debug:
337
+ print(f"piano_roll_array.shape = {piano_roll_array.shape}, piano_roll_array.dtype = {piano_roll_array.dtype}")
338
+ print("1: piano_roll_array[piano_roll_array != 0] = ",piano_roll_array[piano_roll_array != 0])
339
+
340
+ # draw a vertical line every 128/256/512 pixels
341
+ if draw_sep > 0:
342
+ line_every = draw_sep
343
+ for i in range(0, piano_roll_array.shape[-1], line_every):
344
+ if i>0: piano_roll_array[35:-35,i] = 30
345
+ piano_roll_array = np.clip(piano_roll_array, 0, 127) # make sure velocities aren't out of bounds
346
+ midi = piano_roll_to_pretty_midi(piano_roll_array)
347
+ midi = filter_by_velocity(midi)
348
+ return midi
349
+
350
+
351
+ def flip_bottom_half_and_attach(sub_img):
352
+ "takes one 256x256 and returns on 512x128 image with the bottom half reversed and attached on the right"
353
+ h, w = sub_img.size
354
+ new_img = Image.new(sub_img.mode, (w*2, h//2))
355
+ new_img.paste(sub_img.crop((0, 0, w, h//2)), (0, 0))
356
+ new_img.paste(sub_img.crop((0, h//2, w, h)).transpose(Image.FLIP_LEFT_RIGHT), (w, 0))
357
+ return new_img
358
+
359
+
360
+ def square_to_rect(img):
361
+ #"""just an alias for flip_bottom_half_and_attach"""
362
+ return flip_bottom_half_and_attach(img)
363
+
364
+ def rect_to_square(img):
365
+ "takes a 512x128 image and returns a 256x256 image with the bottom half reversed"
366
+ w, h = img.size
367
+ new_img = Image.new(img.mode, (w//2, h*2))
368
+ new_img.paste(img.crop((0, 0, w//2, h)), (0, 0))
369
+ new_img.paste(img.crop((w//2, 0, w, h)).transpose(Image.FLIP_LEFT_RIGHT), (0, h))
370
+ return new_img
371
+
372
+ def regroup_lines(img, debug=False):
373
+ """
374
+ large images come in as an 8x8 grid of 256x256 images, in which the bottom half of each 256x256 is horizontally backwards
375
+ we will rebuild this grid by first flipping the bottom half of each 256x256 image
376
+ """
377
+ img2 = Image.new('RGB', img.size)
378
+ if debug: print(f"regroup_lines: img.size = {img.size}")
379
+
380
+ if img.size[0] == 256:
381
+ img2 = Image.new('RGB', (512,128))
382
+ elif img.size[0] != 2048:
383
+ if debug: print("regroup_lines: unexpected image size, returning image unchanged")
384
+ return img # no op, hope all's well
385
+ imnum = 0
386
+ for row in range(0, img.size[0], 256):
387
+ for col in range(0, img.size[1], 256):
388
+ imnum += 1
389
+ sub_img = img.crop((col, row, col+256, row+256))
390
+ sub_img = square_to_rect(sub_img)
391
+ paste_x, paste_y = (imnum-1) % 4 * 512, (imnum-1) // 4 * 128
392
+ if debug: print(f"imnum = {imnum}, paste_x = {paste_x}, paste_y = {paste_y}")
393
+ img2.paste(sub_img, (paste_x, paste_y))
394
+ if debug: img2.show()
395
+ return img2
396
+
397
+
398
+ def is_red(r,g,b, thresh=20, debug=False):
399
+ result = r > thresh and g < thresh and b < thresh
400
+ if debug: print("is_red: r,g,b = ",r,g,b,", result = ",result)
401
+ return result
402
+
403
+ def is_green(r,g,b, thresh=20):
404
+ return r < thresh and g > thresh and b < thresh
405
+
406
+ def is_black(r,g,b, thresh=20):
407
+ return r < thresh and g < thresh and b < thresh
408
+
409
+ def filter_redgreen(img:Image,
410
+ require_onsets=True, # only keep green lines that start with a red pixel on the left
411
+ thresh=20, # minimum amount of red or green to count
412
+ onset_style=ONSET_STYLE, # 'new' or 'old
413
+ debug=False):
414
+ # filter: only keep black points, and green lines that start with a red pixel on the left.
415
+ # i.e. only green points that have red or green to their left are valid notes
416
+ # intended for img2midi
417
+ img.save('rgfilter_in.png')
418
+ img2 = img.copy()
419
+ if debug: print("img.size = ",img.size,", require_onsets = ",require_onsets," (not require_onsets) =",(not require_onsets)," thresh = ",thresh)
420
+ w, h = img.size
421
+ for y in range(CHORD_BORDER,h-CHORD_BORDER):
422
+ note_on = False
423
+ for x in range(w): # scan from right to left
424
+ r,g,b = img2.getpixel((x,y)) # pixel under consideration
425
+ if debug and (r,g,b)!=(0,0,0): print(f"x, y: {x}, {y}: r, g, b = {r},{g},{b}, note_on = {note_on}, is_red = {is_red(r,g,b, thresh)}, is_green = {is_green(r,g,b, thresh)}")
426
+ if is_red(r,g,b, thresh):
427
+ note_on = True
428
+ if onset_style == 'new': # keep the note but change the red to green
429
+ img2.putpixel((x,y), (0,r,0))
430
+ elif is_green(r,g,b, thresh) and require_onsets and note_on:
431
+ img2.putpixel((x,y), (r,g,b)) # keep the note
432
+ elif is_green(r,g,b, thresh) and (not require_onsets):
433
+ img2.putpixel((x,y), (r,g,b)) # keep the note
434
+ note_on = True
435
+ else:
436
+ note_on = False
437
+ img2.putpixel((x,y), (0,0,0)) # zero it out
438
+
439
+ img2.save('rgfilter_out.png') # debugging always on here
440
+ return img2
441
+
442
+ def arr_check(img, tag=''):
443
+ img = img.convert("RGB")
444
+ arr = np.array(img)[:,:,1]
445
+ print(tag,": arr.shape = ",arr.shape, flush=True)
446
+ print(tag,": arr.T[arr.T != 0] = ",arr.T[arr.T != 0], flush=True)
447
+
448
+ def img2midi_multi(img, require_onsets=True, separators=512, debug=False):
449
+ "can operate on a grid of images"
450
+ img = img.convert('RGB')
451
+ img = regroup_lines(img)
452
+ img = filter_redgreen(img, require_onsets=require_onsets)
453
+ #img = img.convert('L') # convert to grayscale
454
+ red_arr = np.array(img.split()[0])
455
+ green_arr = np.array(img.split()[1])
456
+ combined_arr = red_arr + green_arr
457
+ if debug: arr_check(img, '1')
458
+ img = Image.fromarray(combined_arr, mode="L")
459
+ if debug: arr_check(img, '2')
460
+ return img2midi(img, draw_sep=separators)
461
+
462
+ def infer_mask_from_init_img(img, mask_with='grey', debug=True):
463
+ "note, this works whether image is normalized on 0..1 or -1..1, but not 0..255"
464
+ assert mask_with in ['blue','white','grey']
465
+ "given an image with mask areas marked, extract the mask itself"
466
+ img = np.array(img)
467
+ mask = np.zeros(img.shape[:2])
468
+ if debug: print("infer: img.shape, mask.shape = ",img.shape, mask.shape)
469
+ if mask_with == 'white':
470
+ mask[ (img[0,:,:]==1) & (img[1,:,:]==1) & (img[2,:,:]==1)] = 1
471
+ elif mask_with == 'blue':
472
+ mask[img[2,:,:]==1] = 1 # blue
473
+ if mask_with == 'grey':
474
+ mask[ (img[:,:,0] != 0) & (img[:,:,0] > -1) & (img[:,:,0]==img[:,:,1]) & (img[:,:,2]==img[:,:,1])] = 1
475
+ return mask*1.0
476
+
477
+ def img_file_2_midi_file(img_file, output_dir='', require_onsets=True, separators=512,
478
+ diff_img_file='', debug=True):
479
+ "Converts an image file to a midi file"
480
+ if debug: print(f"Processing {img_file}", flush=True)
481
+ img = Image.open(img_file)
482
+ if debug: arr_check(img, '0')
483
+ midi = img2midi_multi(img, require_onsets=require_onsets, separators=separators)
484
+
485
+ if diff_img_file != '': # put new notes on new instrument.
486
+ bg_img = rect_to_square(Image.open(diff_img_file))
487
+ mask = infer_mask_from_init_img(bg_img, mask_with='grey')
488
+ # tile mask to 3 color channels
489
+ mask = np.stack([mask]*3, axis=-1)
490
+ if debug:
491
+ print("mask.shape = ",mask.shape, flush=True)
492
+ print("mask.min(), mask.max(), mask.sum() = ",mask.min(), mask.max(), mask.sum(), flush=True)
493
+ if bg_img.size[0] > img.size[0]:
494
+ bg_img = rect_to_square(bg_img)
495
+ bg_midi = img2midi_multi(bg_img, require_onsets=require_onsets, separators=separators)
496
+ # grab just the pixels in the mask of img
497
+ arr = np.array(img)
498
+ if debug:
499
+ print("arr.shape, mask.shape = ",arr.shape, mask.shape, flush=True)
500
+ print("arr.min(), arr.max(), arr.sum() = ",arr.min(), arr.max(), arr.sum(), flush=True)
501
+ new_arr = np.zeros_like(arr)
502
+ new_arr[mask > 0] = 1*255# arr[mask > 0]
503
+ new_arr = np.where(mask>0, arr, 0)
504
+ # new_arr[:,:,0] = arr[:,:,0] * mask
505
+ # new_arr[:,:,1] = arr[:,:,1] * mask
506
+ # new_arr[:,:,2] = arr[:,:,2] * mask
507
+ new_img = Image.fromarray(new_arr, 'RGB')
508
+ square_to_rect(new_img).save('new_img.png')
509
+ new_midi = img2midi_multi(new_img, require_onsets=require_onsets, separators=separators)
510
+ bg_midi.instruments.append(new_midi.instruments[0])
511
+ midi = bg_midi
512
+
513
+ midi_file = os.path.basename(img_file).replace('.png', '.mid')
514
+ if output_dir is not None and output_dir != '':
515
+ midi_file = os.path.join(output_dir, midi_file)
516
+ midi.write(midi_file)
517
+ return midi_file
518
+
519
+
520
+
521
+ #### end of code copied from img2midi.py
522
+
523
+
524
+
525
+ ### dataset routines, called from train.h
526
+
527
+ class RandomVerticalShift(torch.nn.Module):
528
+ """
529
+ Update: UNUSED. Instead we do all transposing as pre-processing to facilitate chord detection.
530
+ Randomly shift the image vertically by up to max_shift pixels, which correspond to semitones.
531
+ """
532
+ def __init__(self, max_shift=12):
533
+ super().__init__()
534
+ self.max_shift = max_shift
535
+
536
+ def __call__(self, img):
537
+ shift = torch.randint(-self.max_shift, self.max_shift, (1,))
538
+ return self.vertical_shift(img, shift.item())
539
+
540
+ def vertical_shift(self, img, shift):
541
+ img = ImageOps.exif_transpose(img) # Handle EXIF Orientation
542
+ img = img.transform(img.size, Image.AFFINE, (1, 0, 0, 0, 1, shift), fillcolor=0)
543
+ return img
544
+
545
+
546
+
547
+ class RandomBarCrop(torch.nn.Module):
548
+ """
549
+ Given a PIL image of a piano roll (non-square!), do random cropping the level of measures, i.e. bars, i.e. 16 16th-note pixels
550
+ NOTE: might be nice if piano roll images have initial silence pre-removed -- assuming the first note is supposed to start on the first beat
551
+ """
552
+ def __init__(self, bar_length=16, window_length=512):
553
+ super().__init__()
554
+ self.bl = bar_length # in 16th notes (16 pixels)
555
+ self.wl = window_length # in pixels
556
+ self.bic = self.wl // self.bl # bars in crop
557
+
558
+ def __call__(self, img: Image, debug=False):
559
+ bars_in_image = img.size[0] // self.bl # number of bars in full image
560
+ if self.bic >= bars_in_image: # pad horizontal end of image with zeros if needed
561
+ pad = self.wl - img.size[0] + 1
562
+ img = ImageOps.expand(img, (0, 0, pad, 0), fill=0)
563
+ bars_in_image = img.size[0] // self.bl
564
+ try:
565
+ start_ind = torch.randint(0, bars_in_image - self.bic+1, (1,)).item() # start index of crop
566
+ except Exception as e:
567
+ print(f"***MY ERROR: {e}. bars_in_image = {bars_in_image}, self.bic = {self.bic}")
568
+ assert False
569
+ start_pixel = start_ind * self.bl # start pixel of crop
570
+ new_img = img.crop((start_pixel, 0, start_pixel + self.wl, img.size[1]))
571
+ assert new_img.size[0] == self.wl and new_img.size[1]==128, f"ERROR: new_img.size = {new_img.size}, self.wl = {self.wl}"
572
+ return new_img
573
+
574
+
575
+
576
+ class StackPianoRollsImage(torch.nn.Module):
577
+ """
578
+ Given a PIL image of a piano roll, cut in in half horizontally,
579
+ stack the two halves, with the lower half mirrored horzontally.
580
+ """
581
+ def __init__(self, final_size=(256, 256), max_shift=13):
582
+ super().__init__()
583
+ self.final_size = final_size
584
+
585
+ def __call__(self, img: Image, debug=False):
586
+ if img.size[0] <= 128 and img.size[1] <= 128:
587
+ return img # don't stack small images
588
+ # image dimensions are likely 512x128. I want 256x256 output
589
+ half_width = img.size[0] // 2
590
+ #make a new image with dimensions 256x256, with the same color mode as img
591
+ new_img = Image.new(img.mode, self.final_size)
592
+ # paste the first half of the image into the top half of the new image
593
+ first_half = img.crop((0, 0, half_width, img.size[1]))
594
+ new_img.paste(first_half, (0, 0))
595
+ # paste the second half of the image into the bottom half of the new image, but flipped horizontally
596
+ next_half = img.crop((half_width, 0, 2*half_width, img.size[1]))
597
+ next_half = ImageOps.mirror(next_half)
598
+ new_img.paste(next_half, (0, img.size[1]))
599
+ return new_img
600
+
601
+
602
+
603
+ class StackPianoRollsTensor(torch.nn.Module):
604
+ """
605
+ Tensor version of StackPianoRollsImage. Unused, i think.
606
+ Given a torch tensor of a piano roll, cut in in half horizontally, stack the two halves
607
+ but have the bottom half mirrored horzontally.
608
+ """
609
+ def __init__(self):
610
+ super().__init__()
611
+
612
+ def __call__(self, img: torch.Tensor):
613
+ if img.shape[0] <= 128 and img.shape[1] <= 128:
614
+ return img # don't stack small images
615
+ img = img.permute(1, 2, 0)
616
+ half_width = img.shape[0] // 2
617
+ img = torch.cat([img[:half_width], img[half_width:][::-1]], dim=0)
618
+ img = img.permute(2, 0, 1)
619
+ return img
620
+
621
+
622
+
623
+
624
+ if __name__ == '__main__':
625
+ import sys
626
+
627
+ # testing for the StackPianoRollsImage class
628
+ filename = sys.argv[-1]
629
+ print("filename = ", filename)
630
+ img = Image.open(filename)
631
+ img = transforms.RandomCrop((128, 512))(img) # randomly crop it to 128x512
632
+ img = StackPianoRollsImage()(img, debug=True)
633
+ img.show()
634
+
rect_to_square.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ # reads in a rectangular image, cuts it in half length-wise, and attaches the right half to the bottom, reversed
4
+
5
+ import sys
6
+ from PIL import Image
7
+
8
+
9
+ def rect_to_square(img):
10
+ # get width and height of img
11
+ w, h = img.size
12
+ new_img = Image.new(img.mode, (w//2, h*2))
13
+ new_img.paste(img.crop((0, 0, w, h)), (0, 0))
14
+ new_img.paste(img.crop((0, 0, w, h)).transpose(Image.FLIP_LEFT_RIGHT), (0, h))
15
+ return new_img
16
+
17
+
18
+ if __name__ == '__main__':
19
+ img_filename = sys.argv[1]
20
+ in_img = Image.open(img_filename)
21
+ print("Input image dimenions: ", in_img.size)
22
+ out_img = rect_to_square(in_img)
23
+ print("Output image dimenions: ", out_img.size)
24
+ out_filename = img_filename.replace('.png', '_square.png')
25
+ print("Saving to ", out_filename)
26
+ out_img.save(out_filename)
square_to_rect.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ # reads in a square image and outputs a rectangular image
4
+
5
+ import sys
6
+ from PIL import Image
7
+
8
+ def flip_bottom_half_and_attach(img):
9
+ "takes one 256x256 and returns on 512x128 image with the bottom half reversed and attached on the right"
10
+ #w, h = 256, 256
11
+ h, w = img.size
12
+ #assert sub_img.size[0] == h and sub_img.size[1] == w
13
+ new_img = Image.new(img.mode, (w*2, h//2))
14
+ new_img.paste(img.crop((0, 0, w, h//2)), (0, 0))
15
+ new_img.paste(img.crop((0, h//2, w, h)).transpose(Image.FLIP_LEFT_RIGHT), (w, 0))
16
+ return new_img
17
+
18
+ def square_to_rect(img):
19
+ # just an alias for flip_bottom_half_and_attach
20
+ return flip_bottom_half_and_attach(img)
21
+
22
+
23
+ if __name__ == '__main__':
24
+ img_filename = sys.argv[1]
25
+ square_img = Image.open(img_filename)
26
+ print("Input image dimenions: ", square_img.size)
27
+ rect_img = square_to_rect(square_img)
28
+ print("Output image dimenions: ", rect_img.size)
29
+ out_filename = img_filename.replace('.png', '_rect.png')
30
+ print("Saving to ", out_filename)
31
+ rect_img.save(out_filename)