Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class Net(nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
self.conv1 = nn.Conv2d(3, 32, 5) | |
self.conv2 = nn.Conv2d(32, 64, 5) | |
self.conv3 = nn.Conv2d(64, 128, 5) | |
self.conv4 = nn.Conv2d(128, 256, 5) | |
self.conv5 = nn.Conv2d(256, 512, 5) | |
self.fc1 = None | |
self.fc2 = nn.Linear(512, 128) | |
self.fc3 = nn.Linear(128, 64) | |
self.fc4 = nn.Linear(64, 2) | |
def forward(self, x): | |
x = x.float() | |
""" x = F.relu(self.conv1(x)) | |
x = F.relu(self.conv2(x)) | |
x = F.max_pool2d(x, 2) | |
x = F.relu(self.conv3(x)) | |
x = F.relu(self.conv4(x)) | |
x = F.max_pool2d(x, 2) | |
x = F.relu(self.conv5(x)) | |
x = F.max_pool2d(x, 2) """ | |
x = F.max_pool2d(F.relu(self.conv1(x)), 2) | |
x = F.max_pool2d(F.relu(self.conv2(x)), 2) | |
x = F.max_pool2d(F.relu(self.conv3(x)), 2) | |
x = F.max_pool2d(F.relu(self.conv4(x)), 2) | |
x = F.max_pool2d(F.relu(self.conv5(x)), 2) | |
#x = x.view(x.size(0), -1) | |
x = torch.flatten(x, 1) | |
if self.fc1 is None: | |
self.fc1 = nn.Linear(x.shape[1], 512).to(x.device) | |
x = F.relu(self.fc1(x)) | |
x = F.relu(self.fc2(x)) | |
x = F.relu(self.fc3(x)) | |
x = self.fc4(x) | |
return x |