Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from PIL import Image | |
import os | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class Net(nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
self.conv1 = nn.Conv2d(3, 32, 5) | |
self.conv2 = nn.Conv2d(32, 64, 5) | |
self.conv3 = nn.Conv2d(64, 128, 5) | |
self.conv4 = nn.Conv2d(128, 256, 5) | |
self.conv5 = nn.Conv2d(256, 512, 5) | |
self.fc1 = None | |
self.fc2 = nn.Linear(512, 128) | |
self.fc3 = nn.Linear(128, 64) | |
self.fc4 = nn.Linear(64, 2) | |
def forward(self, x): | |
x = x.float() | |
""" x = F.relu(self.conv1(x)) | |
x = F.relu(self.conv2(x)) | |
x = F.max_pool2d(x, 2) | |
x = F.relu(self.conv3(x)) | |
x = F.relu(self.conv4(x)) | |
x = F.max_pool2d(x, 2) | |
x = F.relu(self.conv5(x)) | |
x = F.max_pool2d(x, 2) """ | |
x = F.max_pool2d(F.relu(self.conv1(x)), 2) | |
x = F.max_pool2d(F.relu(self.conv2(x)), 2) | |
x = F.max_pool2d(F.relu(self.conv3(x)), 2) | |
x = F.max_pool2d(F.relu(self.conv4(x)), 2) | |
x = F.max_pool2d(F.relu(self.conv5(x)), 2) | |
#x = x.view(x.size(0), -1) | |
x = torch.flatten(x, 1) | |
if self.fc1 is None: | |
self.fc1 = nn.Linear(x.shape[1], 512).to(x.device) | |
x = F.relu(self.fc1(x)) | |
x = F.relu(self.fc2(x)) | |
x = F.relu(self.fc3(x)) | |
x = self.fc4(x) | |
return x | |
def classify(model, img, trans=None, classes=[], device=torch.device("cpu")): | |
try: | |
model = model.eval() | |
img = img.convert("RGB") | |
img = trans(img) | |
img = img.unsqueeze(0) | |
img = img.to(device) | |
output = model(img) | |
_, pred = torch.max(output, 1) | |
procent = torch.sigmoid(output) | |
return f"It {classes[pred.item()].replace('_', ' ')}, I'm {procent[0][pred[0]]*100:.2f}% sure" | |
except Exception: | |
return "Something went wrong😕, please notify the developer with the following message: " + str(Exception) | |
st.title("Pizza & Not Pizza") | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
checkpoint = torch.load("best.pth.tar", map_location=device) | |
model = checkpoint["model"] | |
classes = checkpoint["classes"] | |
tran = checkpoint["transform"] | |
# upload image | |
uploaded_file = st.file_uploader("Choose an image...", type="jpg") | |
taking_picture = st.camera_input("Take a picture...") | |
if uploaded_file is not None: | |
img = Image.open(uploaded_file) | |
st.image(img, caption="Uploaded Image.", use_column_width=True) | |
label = classify(model, img, tran, classes, device) | |
st.write(label) | |
elif taking_picture is not None: | |
img = Image.open(taking_picture) | |
st.image(img, caption="Uploaded Image.", use_column_width=True) | |
label = classify(model, img, tran, classes, device) | |
st.write(label) | |
else: | |
pass | |