import streamlit as st import torch from PIL import Image import os import torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 32, 5) self.conv2 = nn.Conv2d(32, 64, 5) self.conv3 = nn.Conv2d(64, 128, 5) self.conv4 = nn.Conv2d(128, 256, 5) self.conv5 = nn.Conv2d(256, 512, 5) self.fc1 = None self.fc2 = nn.Linear(512, 128) self.fc3 = nn.Linear(128, 64) self.fc4 = nn.Linear(64, 2) def forward(self, x): x = x.float() """ x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv3(x)) x = F.relu(self.conv4(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv5(x)) x = F.max_pool2d(x, 2) """ x = F.max_pool2d(F.relu(self.conv1(x)), 2) x = F.max_pool2d(F.relu(self.conv2(x)), 2) x = F.max_pool2d(F.relu(self.conv3(x)), 2) x = F.max_pool2d(F.relu(self.conv4(x)), 2) x = F.max_pool2d(F.relu(self.conv5(x)), 2) #x = x.view(x.size(0), -1) x = torch.flatten(x, 1) if self.fc1 is None: self.fc1 = nn.Linear(x.shape[1], 512).to(x.device) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) x = self.fc4(x) return x def classify(model, img, trans=None, classes=[], device=torch.device("cpu")): try: model = model.eval() img = img.convert("RGB") img = trans(img) img = img.unsqueeze(0) img = img.to(device) output = model(img) _, pred = torch.max(output, 1) procent = torch.sigmoid(output) return f"It {classes[pred.item()].replace('_', ' ')}, I'm {procent[0][pred[0]]*100:.2f}% sure" except Exception: return "Something went wrong😕, please notify the developer with the following message: " + str(Exception) st.title("Pizza & Not Pizza") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") checkpoint = torch.load("best.pth.tar", map_location=device) model = checkpoint["model"] classes = checkpoint["classes"] tran = checkpoint["transform"] # upload image uploaded_file = st.file_uploader("Choose an image...", type="jpg") taking_picture = st.camera_input("Take a picture...") if uploaded_file is not None: img = Image.open(uploaded_file) st.image(img, caption="Uploaded Image.", use_column_width=True) label = classify(model, img, tran, classes, device) st.write(label) elif taking_picture is not None: img = Image.open(taking_picture) st.image(img, caption="Uploaded Image.", use_column_width=True) label = classify(model, img, tran, classes, device) st.write(label) else: pass