Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# coding: utf-8 | |
# In[ ]: | |
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
from sklearn.metrics import mean_squared_error, r2_score | |
def calculate_rmse(actual, predicted): | |
return np.sqrt(mean_squared_error(actual, predicted)) | |
def calculate_r2(actual, predicted): | |
return r2_score(actual, predicted) | |
def main(): | |
st.title("RMSE ve R2 Skoru Hesaplama") | |
# Kontrol dosyasını yükleme | |
control_file_path = "test_reel.csv" | |
control_data = pd.read_csv(control_file_path) | |
# Tahmin dosyasını yükleme | |
prediction_file = st.file_uploader("Tahmin dosyasını yükleyin", type="csv") | |
if prediction_file is not None: | |
prediction_data = pd.read_csv(prediction_file) | |
# Price sütunlarını seçme | |
control_price = control_data["Price"].values | |
prediction_price = prediction_data["Price"].values | |
# RMSE skoru hesaplama | |
rmse_score = calculate_rmse(control_price, prediction_price) | |
# R2 skoru hesaplama | |
r2_score_val = calculate_r2(control_price, prediction_price) | |
# Sonuçları gösterme | |
st.write("RMSE Skoru:", rmse_score) | |
st.write("R2 Skoru:", r2_score_val) | |
if __name__ == "__main__": | |
main() | |