#!/usr/bin/env python # coding: utf-8 # In[ ]: import streamlit as st import pandas as pd import numpy as np from sklearn.metrics import mean_squared_error, r2_score def calculate_rmse(actual, predicted): return np.sqrt(mean_squared_error(actual, predicted)) def calculate_r2(actual, predicted): return r2_score(actual, predicted) def main(): st.title("RMSE ve R2 Skoru Hesaplama") # Kontrol dosyasını yükleme control_file_path = "test_reel.csv" control_data = pd.read_csv(control_file_path) # Tahmin dosyasını yükleme prediction_file = st.file_uploader("Tahmin dosyasını yükleyin", type="csv") if prediction_file is not None: prediction_data = pd.read_csv(prediction_file) # Price sütunlarını seçme control_price = control_data["Price"].values prediction_price = prediction_data["Price"].values # RMSE skoru hesaplama rmse_score = calculate_rmse(control_price, prediction_price) # R2 skoru hesaplama r2_score_val = calculate_r2(control_price, prediction_price) # Sonuçları gösterme st.write("RMSE Skoru:", rmse_score) st.write("R2 Skoru:", r2_score_val) if __name__ == "__main__": main()