|
import numpy as np |
|
import torch |
|
import copy |
|
from torch import nn |
|
import torch.nn.functional as F |
|
import torchaudio |
|
import librosa |
|
import matplotlib.pyplot as plt |
|
from munch import Munch |
|
|
|
|
|
def get_data_path_list(train_path=None, val_path=None): |
|
if train_path is None: |
|
train_path = "Data/train_list.txt" |
|
if val_path is None: |
|
val_path = "Data/val_list.txt" |
|
|
|
with open(train_path, 'r', encoding='utf-8', errors='ignore') as f: |
|
train_list = f.readlines() |
|
with open(val_path, 'r', encoding='utf-8', errors='ignore') as f: |
|
val_list = f.readlines() |
|
|
|
return train_list, val_list |
|
|
|
def length_to_mask(lengths): |
|
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) |
|
mask = torch.gt(mask+1, lengths.unsqueeze(1)) |
|
return mask |
|
|
|
|
|
def log_norm(x, mean=-4, std=4, dim=2): |
|
""" |
|
normalized log mel -> mel -> norm -> log(norm) |
|
""" |
|
x = torch.log(torch.exp(x * std + mean).norm(dim=dim)) |
|
return x |
|
|
|
def get_image(arrs): |
|
plt.switch_backend('agg') |
|
fig = plt.figure() |
|
ax = plt.gca() |
|
ax.imshow(arrs) |
|
|
|
return fig |
|
|
|
def recursive_munch(d): |
|
if isinstance(d, dict): |
|
return Munch((k, recursive_munch(v)) for k, v in d.items()) |
|
elif isinstance(d, list): |
|
return [recursive_munch(v) for v in d] |
|
else: |
|
return d |
|
|
|
def log_print(message, logger): |
|
logger.info(message) |
|
print(message) |
|
|