drewThomasson commited on
Commit
35a81e5
1 Parent(s): b4762f0

Upload 51 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. styletts2/Configs/config.yml +116 -0
  2. styletts2/Configs/config_ft.yml +111 -0
  3. styletts2/Configs/config_libritts.yml +113 -0
  4. styletts2/LICENSE +21 -0
  5. styletts2/Modules/__init__.py +1 -0
  6. styletts2/Modules/__pycache__/__init__.cpython-310.pyc +0 -0
  7. styletts2/Modules/__pycache__/discriminators.cpython-310.pyc +0 -0
  8. styletts2/Modules/__pycache__/hifigan.cpython-310.pyc +0 -0
  9. styletts2/Modules/__pycache__/utils.cpython-310.pyc +0 -0
  10. styletts2/Modules/diffusion/__init__.py +1 -0
  11. styletts2/Modules/diffusion/__pycache__/__init__.cpython-310.pyc +0 -0
  12. styletts2/Modules/diffusion/__pycache__/diffusion.cpython-310.pyc +0 -0
  13. styletts2/Modules/diffusion/__pycache__/modules.cpython-310.pyc +0 -0
  14. styletts2/Modules/diffusion/__pycache__/sampler.cpython-310.pyc +0 -0
  15. styletts2/Modules/diffusion/__pycache__/utils.cpython-310.pyc +0 -0
  16. styletts2/Modules/diffusion/diffusion.py +94 -0
  17. styletts2/Modules/diffusion/modules.py +693 -0
  18. styletts2/Modules/diffusion/sampler.py +691 -0
  19. styletts2/Modules/diffusion/utils.py +82 -0
  20. styletts2/Modules/discriminators.py +188 -0
  21. styletts2/Modules/hifigan.py +477 -0
  22. styletts2/Modules/istftnet.py +530 -0
  23. styletts2/Modules/slmadv.py +195 -0
  24. styletts2/Modules/utils.py +14 -0
  25. styletts2/README.md +119 -0
  26. styletts2/Utils/ASR/__init__.py +1 -0
  27. styletts2/Utils/ASR/__pycache__/__init__.cpython-310.pyc +0 -0
  28. styletts2/Utils/ASR/__pycache__/layers.cpython-310.pyc +0 -0
  29. styletts2/Utils/ASR/__pycache__/models.cpython-310.pyc +0 -0
  30. styletts2/Utils/ASR/config.yml +29 -0
  31. styletts2/Utils/ASR/layers.py +354 -0
  32. styletts2/Utils/ASR/models.py +186 -0
  33. styletts2/Utils/JDC/__init__.py +1 -0
  34. styletts2/Utils/JDC/__pycache__/__init__.cpython-310.pyc +0 -0
  35. styletts2/Utils/JDC/__pycache__/model.cpython-310.pyc +0 -0
  36. styletts2/Utils/JDC/model.py +190 -0
  37. styletts2/Utils/PLBERT/__pycache__/util.cpython-310.pyc +0 -0
  38. styletts2/Utils/PLBERT/config.yml +30 -0
  39. styletts2/Utils/PLBERT/util.py +52 -0
  40. styletts2/Utils/__init__.py +1 -0
  41. styletts2/Utils/__pycache__/__init__.cpython-310.pyc +0 -0
  42. styletts2/__init__.py +0 -0
  43. styletts2/losses.py +253 -0
  44. styletts2/meldataset.py +255 -0
  45. styletts2/models.py +713 -0
  46. styletts2/optimizers.py +73 -0
  47. styletts2/phoneme.py +34 -0
  48. styletts2/requirements.txt +20 -0
  49. styletts2/text_utils.py +26 -0
  50. styletts2/tts.py +451 -0
styletts2/Configs/config.yml ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_dir: "Models/LJSpeech"
2
+ first_stage_path: "first_stage.pth"
3
+ save_freq: 2
4
+ log_interval: 10
5
+ device: "cuda"
6
+ epochs_1st: 200 # number of epochs for first stage training (pre-training)
7
+ epochs_2nd: 100 # number of peochs for second stage training (joint training)
8
+ batch_size: 16
9
+ max_len: 400 # maximum number of frames
10
+ pretrained_model: ""
11
+ second_stage_load_pretrained: true # set to true if the pre-trained model is for 2nd stage
12
+ load_only_params: false # set to true if do not want to load epoch numbers and optimizer parameters
13
+
14
+ F0_path: "Utils/JDC/bst.t7"
15
+ ASR_config: "Utils/ASR/config.yml"
16
+ ASR_path: "Utils/ASR/epoch_00080.pth"
17
+ PLBERT_dir: 'Utils/PLBERT/'
18
+
19
+ data_params:
20
+ train_data: "Data/train_list.txt"
21
+ val_data: "Data/val_list.txt"
22
+ root_path: "/local/LJSpeech-1.1/wavs"
23
+ OOD_data: "Data/OOD_texts.txt"
24
+ min_length: 50 # sample until texts with this size are obtained for OOD texts
25
+
26
+ preprocess_params:
27
+ sr: 24000
28
+ spect_params:
29
+ n_fft: 2048
30
+ win_length: 1200
31
+ hop_length: 300
32
+
33
+ model_params:
34
+ multispeaker: false
35
+
36
+ dim_in: 64
37
+ hidden_dim: 512
38
+ max_conv_dim: 512
39
+ n_layer: 3
40
+ n_mels: 80
41
+
42
+ n_token: 178 # number of phoneme tokens
43
+ max_dur: 50 # maximum duration of a single phoneme
44
+ style_dim: 128 # style vector size
45
+
46
+ dropout: 0.2
47
+
48
+ # config for decoder
49
+ decoder:
50
+ type: 'istftnet' # either hifigan or istftnet
51
+ resblock_kernel_sizes: [3,7,11]
52
+ upsample_rates : [10, 6]
53
+ upsample_initial_channel: 512
54
+ resblock_dilation_sizes: [[1,3,5], [1,3,5], [1,3,5]]
55
+ upsample_kernel_sizes: [20, 12]
56
+ gen_istft_n_fft: 20
57
+ gen_istft_hop_size: 5
58
+
59
+ # speech language model config
60
+ slm:
61
+ model: 'microsoft/wavlm-base-plus'
62
+ sr: 16000 # sampling rate of SLM
63
+ hidden: 768 # hidden size of SLM
64
+ nlayers: 13 # number of layers of SLM
65
+ initial_channel: 64 # initial channels of SLM discriminator head
66
+
67
+ # style diffusion model config
68
+ diffusion:
69
+ embedding_mask_proba: 0.1
70
+ # transformer config
71
+ transformer:
72
+ num_layers: 3
73
+ num_heads: 8
74
+ head_features: 64
75
+ multiplier: 2
76
+
77
+ # diffusion distribution config
78
+ dist:
79
+ sigma_data: 0.2 # placeholder for estimate_sigma_data set to false
80
+ estimate_sigma_data: true # estimate sigma_data from the current batch if set to true
81
+ mean: -3.0
82
+ std: 1.0
83
+
84
+ loss_params:
85
+ lambda_mel: 5. # mel reconstruction loss
86
+ lambda_gen: 1. # generator loss
87
+ lambda_slm: 1. # slm feature matching loss
88
+
89
+ lambda_mono: 1. # monotonic alignment loss (1st stage, TMA)
90
+ lambda_s2s: 1. # sequence-to-sequence loss (1st stage, TMA)
91
+ TMA_epoch: 50 # TMA starting epoch (1st stage)
92
+
93
+ lambda_F0: 1. # F0 reconstruction loss (2nd stage)
94
+ lambda_norm: 1. # norm reconstruction loss (2nd stage)
95
+ lambda_dur: 1. # duration loss (2nd stage)
96
+ lambda_ce: 20. # duration predictor probability output CE loss (2nd stage)
97
+ lambda_sty: 1. # style reconstruction loss (2nd stage)
98
+ lambda_diff: 1. # score matching loss (2nd stage)
99
+
100
+ diff_epoch: 20 # style diffusion starting epoch (2nd stage)
101
+ joint_epoch: 50 # joint training starting epoch (2nd stage)
102
+
103
+ optimizer_params:
104
+ lr: 0.0001 # general learning rate
105
+ bert_lr: 0.00001 # learning rate for PLBERT
106
+ ft_lr: 0.00001 # learning rate for acoustic modules
107
+
108
+ slmadv_params:
109
+ min_len: 400 # minimum length of samples
110
+ max_len: 500 # maximum length of samples
111
+ batch_percentage: 0.5 # to prevent out of memory, only use half of the original batch size
112
+ iter: 10 # update the discriminator every this iterations of generator update
113
+ thresh: 5 # gradient norm above which the gradient is scaled
114
+ scale: 0.01 # gradient scaling factor for predictors from SLM discriminators
115
+ sig: 1.5 # sigma for differentiable duration modeling
116
+
styletts2/Configs/config_ft.yml ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_dir: "Models/LJSpeech"
2
+ save_freq: 5
3
+ log_interval: 10
4
+ device: "cuda"
5
+ epochs: 50 # number of finetuning epoch (1 hour of data)
6
+ batch_size: 8
7
+ max_len: 400 # maximum number of frames
8
+ pretrained_model: "Models/LibriTTS/epochs_2nd_00020.pth"
9
+ second_stage_load_pretrained: true # set to true if the pre-trained model is for 2nd stage
10
+ load_only_params: true # set to true if do not want to load epoch numbers and optimizer parameters
11
+
12
+ F0_path: "Utils/JDC/bst.t7"
13
+ ASR_config: "Utils/ASR/config.yml"
14
+ ASR_path: "Utils/ASR/epoch_00080.pth"
15
+ PLBERT_dir: 'Utils/PLBERT/'
16
+
17
+ data_params:
18
+ train_data: "Data/train_list.txt"
19
+ val_data: "Data/val_list.txt"
20
+ root_path: "/local/LJSpeech-1.1/wavs"
21
+ OOD_data: "Data/OOD_texts.txt"
22
+ min_length: 50 # sample until texts with this size are obtained for OOD texts
23
+
24
+ preprocess_params:
25
+ sr: 24000
26
+ spect_params:
27
+ n_fft: 2048
28
+ win_length: 1200
29
+ hop_length: 300
30
+
31
+ model_params:
32
+ multispeaker: true
33
+
34
+ dim_in: 64
35
+ hidden_dim: 512
36
+ max_conv_dim: 512
37
+ n_layer: 3
38
+ n_mels: 80
39
+
40
+ n_token: 178 # number of phoneme tokens
41
+ max_dur: 50 # maximum duration of a single phoneme
42
+ style_dim: 128 # style vector size
43
+
44
+ dropout: 0.2
45
+
46
+ # config for decoder
47
+ decoder:
48
+ type: 'hifigan' # either hifigan or istftnet
49
+ resblock_kernel_sizes: [3,7,11]
50
+ upsample_rates : [10,5,3,2]
51
+ upsample_initial_channel: 512
52
+ resblock_dilation_sizes: [[1,3,5], [1,3,5], [1,3,5]]
53
+ upsample_kernel_sizes: [20,10,6,4]
54
+
55
+ # speech language model config
56
+ slm:
57
+ model: 'microsoft/wavlm-base-plus'
58
+ sr: 16000 # sampling rate of SLM
59
+ hidden: 768 # hidden size of SLM
60
+ nlayers: 13 # number of layers of SLM
61
+ initial_channel: 64 # initial channels of SLM discriminator head
62
+
63
+ # style diffusion model config
64
+ diffusion:
65
+ embedding_mask_proba: 0.1
66
+ # transformer config
67
+ transformer:
68
+ num_layers: 3
69
+ num_heads: 8
70
+ head_features: 64
71
+ multiplier: 2
72
+
73
+ # diffusion distribution config
74
+ dist:
75
+ sigma_data: 0.2 # placeholder for estimate_sigma_data set to false
76
+ estimate_sigma_data: true # estimate sigma_data from the current batch if set to true
77
+ mean: -3.0
78
+ std: 1.0
79
+
80
+ loss_params:
81
+ lambda_mel: 5. # mel reconstruction loss
82
+ lambda_gen: 1. # generator loss
83
+ lambda_slm: 1. # slm feature matching loss
84
+
85
+ lambda_mono: 1. # monotonic alignment loss (TMA)
86
+ lambda_s2s: 1. # sequence-to-sequence loss (TMA)
87
+
88
+ lambda_F0: 1. # F0 reconstruction loss
89
+ lambda_norm: 1. # norm reconstruction loss
90
+ lambda_dur: 1. # duration loss
91
+ lambda_ce: 20. # duration predictor probability output CE loss
92
+ lambda_sty: 1. # style reconstruction loss
93
+ lambda_diff: 1. # score matching loss
94
+
95
+ diff_epoch: 10 # style diffusion starting epoch
96
+ joint_epoch: 30 # joint training starting epoch
97
+
98
+ optimizer_params:
99
+ lr: 0.0001 # general learning rate
100
+ bert_lr: 0.00001 # learning rate for PLBERT
101
+ ft_lr: 0.0001 # learning rate for acoustic modules
102
+
103
+ slmadv_params:
104
+ min_len: 400 # minimum length of samples
105
+ max_len: 500 # maximum length of samples
106
+ batch_percentage: 0.5 # to prevent out of memory, only use half of the original batch size
107
+ iter: 10 # update the discriminator every this iterations of generator update
108
+ thresh: 5 # gradient norm above which the gradient is scaled
109
+ scale: 0.01 # gradient scaling factor for predictors from SLM discriminators
110
+ sig: 1.5 # sigma for differentiable duration modeling
111
+
styletts2/Configs/config_libritts.yml ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_dir: "Models/LibriTTS"
2
+ first_stage_path: "first_stage.pth"
3
+ save_freq: 1
4
+ log_interval: 10
5
+ device: "cuda"
6
+ epochs_1st: 50 # number of epochs for first stage training (pre-training)
7
+ epochs_2nd: 30 # number of peochs for second stage training (joint training)
8
+ batch_size: 16
9
+ max_len: 300 # maximum number of frames
10
+ pretrained_model: ""
11
+ second_stage_load_pretrained: true # set to true if the pre-trained model is for 2nd stage
12
+ load_only_params: false # set to true if do not want to load epoch numbers and optimizer parameters
13
+
14
+ F0_path: "Utils/JDC/bst.t7"
15
+ ASR_config: "Utils/ASR/config.yml"
16
+ ASR_path: "Utils/ASR/epoch_00080.pth"
17
+ PLBERT_dir: 'Utils/PLBERT/'
18
+
19
+ data_params:
20
+ train_data: "Data/train_list.txt"
21
+ val_data: "Data/val_list.txt"
22
+ root_path: ""
23
+ OOD_data: "Data/OOD_texts.txt"
24
+ min_length: 50 # sample until texts with this size are obtained for OOD texts
25
+
26
+ preprocess_params:
27
+ sr: 24000
28
+ spect_params:
29
+ n_fft: 2048
30
+ win_length: 1200
31
+ hop_length: 300
32
+
33
+ model_params:
34
+ multispeaker: true
35
+
36
+ dim_in: 64
37
+ hidden_dim: 512
38
+ max_conv_dim: 512
39
+ n_layer: 3
40
+ n_mels: 80
41
+
42
+ n_token: 178 # number of phoneme tokens
43
+ max_dur: 50 # maximum duration of a single phoneme
44
+ style_dim: 128 # style vector size
45
+
46
+ dropout: 0.2
47
+
48
+ # config for decoder
49
+ decoder:
50
+ type: 'hifigan' # either hifigan or istftnet
51
+ resblock_kernel_sizes: [3,7,11]
52
+ upsample_rates : [10,5,3,2]
53
+ upsample_initial_channel: 512
54
+ resblock_dilation_sizes: [[1,3,5], [1,3,5], [1,3,5]]
55
+ upsample_kernel_sizes: [20,10,6,4]
56
+
57
+ # speech language model config
58
+ slm:
59
+ model: 'microsoft/wavlm-base-plus'
60
+ sr: 16000 # sampling rate of SLM
61
+ hidden: 768 # hidden size of SLM
62
+ nlayers: 13 # number of layers of SLM
63
+ initial_channel: 64 # initial channels of SLM discriminator head
64
+
65
+ # style diffusion model config
66
+ diffusion:
67
+ embedding_mask_proba: 0.1
68
+ # transformer config
69
+ transformer:
70
+ num_layers: 3
71
+ num_heads: 8
72
+ head_features: 64
73
+ multiplier: 2
74
+
75
+ # diffusion distribution config
76
+ dist:
77
+ sigma_data: 0.2 # placeholder for estimate_sigma_data set to false
78
+ estimate_sigma_data: true # estimate sigma_data from the current batch if set to true
79
+ mean: -3.0
80
+ std: 1.0
81
+
82
+ loss_params:
83
+ lambda_mel: 5. # mel reconstruction loss
84
+ lambda_gen: 1. # generator loss
85
+ lambda_slm: 1. # slm feature matching loss
86
+
87
+ lambda_mono: 1. # monotonic alignment loss (1st stage, TMA)
88
+ lambda_s2s: 1. # sequence-to-sequence loss (1st stage, TMA)
89
+ TMA_epoch: 5 # TMA starting epoch (1st stage)
90
+
91
+ lambda_F0: 1. # F0 reconstruction loss (2nd stage)
92
+ lambda_norm: 1. # norm reconstruction loss (2nd stage)
93
+ lambda_dur: 1. # duration loss (2nd stage)
94
+ lambda_ce: 20. # duration predictor probability output CE loss (2nd stage)
95
+ lambda_sty: 1. # style reconstruction loss (2nd stage)
96
+ lambda_diff: 1. # score matching loss (2nd stage)
97
+
98
+ diff_epoch: 10 # style diffusion starting epoch (2nd stage)
99
+ joint_epoch: 15 # joint training starting epoch (2nd stage)
100
+
101
+ optimizer_params:
102
+ lr: 0.0001 # general learning rate
103
+ bert_lr: 0.00001 # learning rate for PLBERT
104
+ ft_lr: 0.00001 # learning rate for acoustic modules
105
+
106
+ slmadv_params:
107
+ min_len: 400 # minimum length of samples
108
+ max_len: 500 # maximum length of samples
109
+ batch_percentage: 0.5 # to prevent out of memory, only use half of the original batch size
110
+ iter: 20 # update the discriminator every this iterations of generator update
111
+ thresh: 5 # gradient norm above which the gradient is scaled
112
+ scale: 0.01 # gradient scaling factor for predictors from SLM discriminators
113
+ sig: 1.5 # sigma for differentiable duration modeling
styletts2/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 Aaron (Yinghao) Li
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
styletts2/Modules/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+
styletts2/Modules/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (149 Bytes). View file
 
styletts2/Modules/__pycache__/discriminators.cpython-310.pyc ADDED
Binary file (6.04 kB). View file
 
styletts2/Modules/__pycache__/hifigan.cpython-310.pyc ADDED
Binary file (14.5 kB). View file
 
styletts2/Modules/__pycache__/utils.cpython-310.pyc ADDED
Binary file (757 Bytes). View file
 
styletts2/Modules/diffusion/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+
styletts2/Modules/diffusion/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (159 Bytes). View file
 
styletts2/Modules/diffusion/__pycache__/diffusion.cpython-310.pyc ADDED
Binary file (3.65 kB). View file
 
styletts2/Modules/diffusion/__pycache__/modules.cpython-310.pyc ADDED
Binary file (16.2 kB). View file
 
styletts2/Modules/diffusion/__pycache__/sampler.cpython-310.pyc ADDED
Binary file (22.1 kB). View file
 
styletts2/Modules/diffusion/__pycache__/utils.cpython-310.pyc ADDED
Binary file (3.49 kB). View file
 
styletts2/Modules/diffusion/diffusion.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from math import pi
2
+ from random import randint
3
+ from typing import Any, Optional, Sequence, Tuple, Union
4
+
5
+ import torch
6
+ from einops import rearrange
7
+ from torch import Tensor, nn
8
+ from tqdm import tqdm
9
+
10
+ from .utils import *
11
+ from .sampler import *
12
+
13
+ """
14
+ Diffusion Classes (generic for 1d data)
15
+ """
16
+
17
+
18
+ class Model1d(nn.Module):
19
+ def __init__(self, unet_type: str = "base", **kwargs):
20
+ super().__init__()
21
+ diffusion_kwargs, kwargs = groupby("diffusion_", kwargs)
22
+ self.unet = None
23
+ self.diffusion = None
24
+
25
+ def forward(self, x: Tensor, **kwargs) -> Tensor:
26
+ return self.diffusion(x, **kwargs)
27
+
28
+ def sample(self, *args, **kwargs) -> Tensor:
29
+ return self.diffusion.sample(*args, **kwargs)
30
+
31
+
32
+ """
33
+ Audio Diffusion Classes (specific for 1d audio data)
34
+ """
35
+
36
+
37
+ def get_default_model_kwargs():
38
+ return dict(
39
+ channels=128,
40
+ patch_size=16,
41
+ multipliers=[1, 2, 4, 4, 4, 4, 4],
42
+ factors=[4, 4, 4, 2, 2, 2],
43
+ num_blocks=[2, 2, 2, 2, 2, 2],
44
+ attentions=[0, 0, 0, 1, 1, 1, 1],
45
+ attention_heads=8,
46
+ attention_features=64,
47
+ attention_multiplier=2,
48
+ attention_use_rel_pos=False,
49
+ diffusion_type="v",
50
+ diffusion_sigma_distribution=UniformDistribution(),
51
+ )
52
+
53
+
54
+ def get_default_sampling_kwargs():
55
+ return dict(sigma_schedule=LinearSchedule(), sampler=VSampler(), clamp=True)
56
+
57
+
58
+ class AudioDiffusionModel(Model1d):
59
+ def __init__(self, **kwargs):
60
+ super().__init__(**{**get_default_model_kwargs(), **kwargs})
61
+
62
+ def sample(self, *args, **kwargs):
63
+ return super().sample(*args, **{**get_default_sampling_kwargs(), **kwargs})
64
+
65
+
66
+ class AudioDiffusionConditional(Model1d):
67
+ def __init__(
68
+ self,
69
+ embedding_features: int,
70
+ embedding_max_length: int,
71
+ embedding_mask_proba: float = 0.1,
72
+ **kwargs,
73
+ ):
74
+ self.embedding_mask_proba = embedding_mask_proba
75
+ default_kwargs = dict(
76
+ **get_default_model_kwargs(),
77
+ unet_type="cfg",
78
+ context_embedding_features=embedding_features,
79
+ context_embedding_max_length=embedding_max_length,
80
+ )
81
+ super().__init__(**{**default_kwargs, **kwargs})
82
+
83
+ def forward(self, *args, **kwargs):
84
+ default_kwargs = dict(embedding_mask_proba=self.embedding_mask_proba)
85
+ return super().forward(*args, **{**default_kwargs, **kwargs})
86
+
87
+ def sample(self, *args, **kwargs):
88
+ default_kwargs = dict(
89
+ **get_default_sampling_kwargs(),
90
+ embedding_scale=5.0,
91
+ )
92
+ return super().sample(*args, **{**default_kwargs, **kwargs})
93
+
94
+
styletts2/Modules/diffusion/modules.py ADDED
@@ -0,0 +1,693 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from math import floor, log, pi
2
+ from typing import Any, List, Optional, Sequence, Tuple, Union
3
+
4
+ from .utils import *
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ from einops import rearrange, reduce, repeat
9
+ from einops.layers.torch import Rearrange
10
+ from einops_exts import rearrange_many
11
+ from torch import Tensor, einsum
12
+
13
+
14
+ """
15
+ Utils
16
+ """
17
+
18
+ class AdaLayerNorm(nn.Module):
19
+ def __init__(self, style_dim, channels, eps=1e-5):
20
+ super().__init__()
21
+ self.channels = channels
22
+ self.eps = eps
23
+
24
+ self.fc = nn.Linear(style_dim, channels*2)
25
+
26
+ def forward(self, x, s):
27
+ x = x.transpose(-1, -2)
28
+ x = x.transpose(1, -1)
29
+
30
+ h = self.fc(s)
31
+ h = h.view(h.size(0), h.size(1), 1)
32
+ gamma, beta = torch.chunk(h, chunks=2, dim=1)
33
+ gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
34
+
35
+
36
+ x = F.layer_norm(x, (self.channels,), eps=self.eps)
37
+ x = (1 + gamma) * x + beta
38
+ return x.transpose(1, -1).transpose(-1, -2)
39
+
40
+ class StyleTransformer1d(nn.Module):
41
+ def __init__(
42
+ self,
43
+ num_layers: int,
44
+ channels: int,
45
+ num_heads: int,
46
+ head_features: int,
47
+ multiplier: int,
48
+ use_context_time: bool = True,
49
+ use_rel_pos: bool = False,
50
+ context_features_multiplier: int = 1,
51
+ rel_pos_num_buckets: Optional[int] = None,
52
+ rel_pos_max_distance: Optional[int] = None,
53
+ context_features: Optional[int] = None,
54
+ context_embedding_features: Optional[int] = None,
55
+ embedding_max_length: int = 512,
56
+ ):
57
+ super().__init__()
58
+
59
+ self.blocks = nn.ModuleList(
60
+ [
61
+ StyleTransformerBlock(
62
+ features=channels + context_embedding_features,
63
+ head_features=head_features,
64
+ num_heads=num_heads,
65
+ multiplier=multiplier,
66
+ style_dim=context_features,
67
+ use_rel_pos=use_rel_pos,
68
+ rel_pos_num_buckets=rel_pos_num_buckets,
69
+ rel_pos_max_distance=rel_pos_max_distance,
70
+ )
71
+ for i in range(num_layers)
72
+ ]
73
+ )
74
+
75
+ self.to_out = nn.Sequential(
76
+ Rearrange("b t c -> b c t"),
77
+ nn.Conv1d(
78
+ in_channels=channels + context_embedding_features,
79
+ out_channels=channels,
80
+ kernel_size=1,
81
+ ),
82
+ )
83
+
84
+ use_context_features = exists(context_features)
85
+ self.use_context_features = use_context_features
86
+ self.use_context_time = use_context_time
87
+
88
+ if use_context_time or use_context_features:
89
+ context_mapping_features = channels + context_embedding_features
90
+
91
+ self.to_mapping = nn.Sequential(
92
+ nn.Linear(context_mapping_features, context_mapping_features),
93
+ nn.GELU(),
94
+ nn.Linear(context_mapping_features, context_mapping_features),
95
+ nn.GELU(),
96
+ )
97
+
98
+ if use_context_time:
99
+ assert exists(context_mapping_features)
100
+ self.to_time = nn.Sequential(
101
+ TimePositionalEmbedding(
102
+ dim=channels, out_features=context_mapping_features
103
+ ),
104
+ nn.GELU(),
105
+ )
106
+
107
+ if use_context_features:
108
+ assert exists(context_features) and exists(context_mapping_features)
109
+ self.to_features = nn.Sequential(
110
+ nn.Linear(
111
+ in_features=context_features, out_features=context_mapping_features
112
+ ),
113
+ nn.GELU(),
114
+ )
115
+
116
+ self.fixed_embedding = FixedEmbedding(
117
+ max_length=embedding_max_length, features=context_embedding_features
118
+ )
119
+
120
+
121
+ def get_mapping(
122
+ self, time: Optional[Tensor] = None, features: Optional[Tensor] = None
123
+ ) -> Optional[Tensor]:
124
+ """Combines context time features and features into mapping"""
125
+ items, mapping = [], None
126
+ # Compute time features
127
+ if self.use_context_time:
128
+ assert_message = "use_context_time=True but no time features provided"
129
+ assert exists(time), assert_message
130
+ items += [self.to_time(time)]
131
+ # Compute features
132
+ if self.use_context_features:
133
+ assert_message = "context_features exists but no features provided"
134
+ assert exists(features), assert_message
135
+ items += [self.to_features(features)]
136
+
137
+ # Compute joint mapping
138
+ if self.use_context_time or self.use_context_features:
139
+ mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
140
+ mapping = self.to_mapping(mapping)
141
+
142
+ return mapping
143
+
144
+ def run(self, x, time, embedding, features):
145
+
146
+ mapping = self.get_mapping(time, features)
147
+ x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1)
148
+ mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1)
149
+
150
+ for block in self.blocks:
151
+ x = x + mapping
152
+ x = block(x, features)
153
+
154
+ x = x.mean(axis=1).unsqueeze(1)
155
+ x = self.to_out(x)
156
+ x = x.transpose(-1, -2)
157
+
158
+ return x
159
+
160
+ def forward(self, x: Tensor,
161
+ time: Tensor,
162
+ embedding_mask_proba: float = 0.0,
163
+ embedding: Optional[Tensor] = None,
164
+ features: Optional[Tensor] = None,
165
+ embedding_scale: float = 1.0) -> Tensor:
166
+
167
+ b, device = embedding.shape[0], embedding.device
168
+ fixed_embedding = self.fixed_embedding(embedding)
169
+ if embedding_mask_proba > 0.0:
170
+ # Randomly mask embedding
171
+ batch_mask = rand_bool(
172
+ shape=(b, 1, 1), proba=embedding_mask_proba, device=device
173
+ )
174
+ embedding = torch.where(batch_mask, fixed_embedding, embedding)
175
+
176
+ if embedding_scale != 1.0:
177
+ # Compute both normal and fixed embedding outputs
178
+ out = self.run(x, time, embedding=embedding, features=features)
179
+ out_masked = self.run(x, time, embedding=fixed_embedding, features=features)
180
+ # Scale conditional output using classifier-free guidance
181
+ return out_masked + (out - out_masked) * embedding_scale
182
+ else:
183
+ return self.run(x, time, embedding=embedding, features=features)
184
+
185
+ return x
186
+
187
+
188
+ class StyleTransformerBlock(nn.Module):
189
+ def __init__(
190
+ self,
191
+ features: int,
192
+ num_heads: int,
193
+ head_features: int,
194
+ style_dim: int,
195
+ multiplier: int,
196
+ use_rel_pos: bool,
197
+ rel_pos_num_buckets: Optional[int] = None,
198
+ rel_pos_max_distance: Optional[int] = None,
199
+ context_features: Optional[int] = None,
200
+ ):
201
+ super().__init__()
202
+
203
+ self.use_cross_attention = exists(context_features) and context_features > 0
204
+
205
+ self.attention = StyleAttention(
206
+ features=features,
207
+ style_dim=style_dim,
208
+ num_heads=num_heads,
209
+ head_features=head_features,
210
+ use_rel_pos=use_rel_pos,
211
+ rel_pos_num_buckets=rel_pos_num_buckets,
212
+ rel_pos_max_distance=rel_pos_max_distance,
213
+ )
214
+
215
+ if self.use_cross_attention:
216
+ self.cross_attention = StyleAttention(
217
+ features=features,
218
+ style_dim=style_dim,
219
+ num_heads=num_heads,
220
+ head_features=head_features,
221
+ context_features=context_features,
222
+ use_rel_pos=use_rel_pos,
223
+ rel_pos_num_buckets=rel_pos_num_buckets,
224
+ rel_pos_max_distance=rel_pos_max_distance,
225
+ )
226
+
227
+ self.feed_forward = FeedForward(features=features, multiplier=multiplier)
228
+
229
+ def forward(self, x: Tensor, s: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
230
+ x = self.attention(x, s) + x
231
+ if self.use_cross_attention:
232
+ x = self.cross_attention(x, s, context=context) + x
233
+ x = self.feed_forward(x) + x
234
+ return x
235
+
236
+ class StyleAttention(nn.Module):
237
+ def __init__(
238
+ self,
239
+ features: int,
240
+ *,
241
+ style_dim: int,
242
+ head_features: int,
243
+ num_heads: int,
244
+ context_features: Optional[int] = None,
245
+ use_rel_pos: bool,
246
+ rel_pos_num_buckets: Optional[int] = None,
247
+ rel_pos_max_distance: Optional[int] = None,
248
+ ):
249
+ super().__init__()
250
+ self.context_features = context_features
251
+ mid_features = head_features * num_heads
252
+ context_features = default(context_features, features)
253
+
254
+ self.norm = AdaLayerNorm(style_dim, features)
255
+ self.norm_context = AdaLayerNorm(style_dim, context_features)
256
+ self.to_q = nn.Linear(
257
+ in_features=features, out_features=mid_features, bias=False
258
+ )
259
+ self.to_kv = nn.Linear(
260
+ in_features=context_features, out_features=mid_features * 2, bias=False
261
+ )
262
+ self.attention = AttentionBase(
263
+ features,
264
+ num_heads=num_heads,
265
+ head_features=head_features,
266
+ use_rel_pos=use_rel_pos,
267
+ rel_pos_num_buckets=rel_pos_num_buckets,
268
+ rel_pos_max_distance=rel_pos_max_distance,
269
+ )
270
+
271
+ def forward(self, x: Tensor, s: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
272
+ assert_message = "You must provide a context when using context_features"
273
+ assert not self.context_features or exists(context), assert_message
274
+ # Use context if provided
275
+ context = default(context, x)
276
+ # Normalize then compute q from input and k,v from context
277
+ x, context = self.norm(x, s), self.norm_context(context, s)
278
+
279
+ q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
280
+ # Compute and return attention
281
+ return self.attention(q, k, v)
282
+
283
+ class Transformer1d(nn.Module):
284
+ def __init__(
285
+ self,
286
+ num_layers: int,
287
+ channels: int,
288
+ num_heads: int,
289
+ head_features: int,
290
+ multiplier: int,
291
+ use_context_time: bool = True,
292
+ use_rel_pos: bool = False,
293
+ context_features_multiplier: int = 1,
294
+ rel_pos_num_buckets: Optional[int] = None,
295
+ rel_pos_max_distance: Optional[int] = None,
296
+ context_features: Optional[int] = None,
297
+ context_embedding_features: Optional[int] = None,
298
+ embedding_max_length: int = 512,
299
+ ):
300
+ super().__init__()
301
+
302
+ self.blocks = nn.ModuleList(
303
+ [
304
+ TransformerBlock(
305
+ features=channels + context_embedding_features,
306
+ head_features=head_features,
307
+ num_heads=num_heads,
308
+ multiplier=multiplier,
309
+ use_rel_pos=use_rel_pos,
310
+ rel_pos_num_buckets=rel_pos_num_buckets,
311
+ rel_pos_max_distance=rel_pos_max_distance,
312
+ )
313
+ for i in range(num_layers)
314
+ ]
315
+ )
316
+
317
+ self.to_out = nn.Sequential(
318
+ Rearrange("b t c -> b c t"),
319
+ nn.Conv1d(
320
+ in_channels=channels + context_embedding_features,
321
+ out_channels=channels,
322
+ kernel_size=1,
323
+ ),
324
+ )
325
+
326
+ use_context_features = exists(context_features)
327
+ self.use_context_features = use_context_features
328
+ self.use_context_time = use_context_time
329
+
330
+ if use_context_time or use_context_features:
331
+ context_mapping_features = channels + context_embedding_features
332
+
333
+ self.to_mapping = nn.Sequential(
334
+ nn.Linear(context_mapping_features, context_mapping_features),
335
+ nn.GELU(),
336
+ nn.Linear(context_mapping_features, context_mapping_features),
337
+ nn.GELU(),
338
+ )
339
+
340
+ if use_context_time:
341
+ assert exists(context_mapping_features)
342
+ self.to_time = nn.Sequential(
343
+ TimePositionalEmbedding(
344
+ dim=channels, out_features=context_mapping_features
345
+ ),
346
+ nn.GELU(),
347
+ )
348
+
349
+ if use_context_features:
350
+ assert exists(context_features) and exists(context_mapping_features)
351
+ self.to_features = nn.Sequential(
352
+ nn.Linear(
353
+ in_features=context_features, out_features=context_mapping_features
354
+ ),
355
+ nn.GELU(),
356
+ )
357
+
358
+ self.fixed_embedding = FixedEmbedding(
359
+ max_length=embedding_max_length, features=context_embedding_features
360
+ )
361
+
362
+
363
+ def get_mapping(
364
+ self, time: Optional[Tensor] = None, features: Optional[Tensor] = None
365
+ ) -> Optional[Tensor]:
366
+ """Combines context time features and features into mapping"""
367
+ items, mapping = [], None
368
+ # Compute time features
369
+ if self.use_context_time:
370
+ assert_message = "use_context_time=True but no time features provided"
371
+ assert exists(time), assert_message
372
+ items += [self.to_time(time)]
373
+ # Compute features
374
+ if self.use_context_features:
375
+ assert_message = "context_features exists but no features provided"
376
+ assert exists(features), assert_message
377
+ items += [self.to_features(features)]
378
+
379
+ # Compute joint mapping
380
+ if self.use_context_time or self.use_context_features:
381
+ mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
382
+ mapping = self.to_mapping(mapping)
383
+
384
+ return mapping
385
+
386
+ def run(self, x, time, embedding, features):
387
+
388
+ mapping = self.get_mapping(time, features)
389
+ x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1)
390
+ mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1)
391
+
392
+ for block in self.blocks:
393
+ x = x + mapping
394
+ x = block(x)
395
+
396
+ x = x.mean(axis=1).unsqueeze(1)
397
+ x = self.to_out(x)
398
+ x = x.transpose(-1, -2)
399
+
400
+ return x
401
+
402
+ def forward(self, x: Tensor,
403
+ time: Tensor,
404
+ embedding_mask_proba: float = 0.0,
405
+ embedding: Optional[Tensor] = None,
406
+ features: Optional[Tensor] = None,
407
+ embedding_scale: float = 1.0) -> Tensor:
408
+
409
+ b, device = embedding.shape[0], embedding.device
410
+ fixed_embedding = self.fixed_embedding(embedding)
411
+ if embedding_mask_proba > 0.0:
412
+ # Randomly mask embedding
413
+ batch_mask = rand_bool(
414
+ shape=(b, 1, 1), proba=embedding_mask_proba, device=device
415
+ )
416
+ embedding = torch.where(batch_mask, fixed_embedding, embedding)
417
+
418
+ if embedding_scale != 1.0:
419
+ # Compute both normal and fixed embedding outputs
420
+ out = self.run(x, time, embedding=embedding, features=features)
421
+ out_masked = self.run(x, time, embedding=fixed_embedding, features=features)
422
+ # Scale conditional output using classifier-free guidance
423
+ return out_masked + (out - out_masked) * embedding_scale
424
+ else:
425
+ return self.run(x, time, embedding=embedding, features=features)
426
+
427
+ return x
428
+
429
+
430
+ """
431
+ Attention Components
432
+ """
433
+
434
+
435
+ class RelativePositionBias(nn.Module):
436
+ def __init__(self, num_buckets: int, max_distance: int, num_heads: int):
437
+ super().__init__()
438
+ self.num_buckets = num_buckets
439
+ self.max_distance = max_distance
440
+ self.num_heads = num_heads
441
+ self.relative_attention_bias = nn.Embedding(num_buckets, num_heads)
442
+
443
+ @staticmethod
444
+ def _relative_position_bucket(
445
+ relative_position: Tensor, num_buckets: int, max_distance: int
446
+ ):
447
+ num_buckets //= 2
448
+ ret = (relative_position >= 0).to(torch.long) * num_buckets
449
+ n = torch.abs(relative_position)
450
+
451
+ max_exact = num_buckets // 2
452
+ is_small = n < max_exact
453
+
454
+ val_if_large = (
455
+ max_exact
456
+ + (
457
+ torch.log(n.float() / max_exact)
458
+ / log(max_distance / max_exact)
459
+ * (num_buckets - max_exact)
460
+ ).long()
461
+ )
462
+ val_if_large = torch.min(
463
+ val_if_large, torch.full_like(val_if_large, num_buckets - 1)
464
+ )
465
+
466
+ ret += torch.where(is_small, n, val_if_large)
467
+ return ret
468
+
469
+ def forward(self, num_queries: int, num_keys: int) -> Tensor:
470
+ i, j, device = num_queries, num_keys, self.relative_attention_bias.weight.device
471
+ q_pos = torch.arange(j - i, j, dtype=torch.long, device=device)
472
+ k_pos = torch.arange(j, dtype=torch.long, device=device)
473
+ rel_pos = rearrange(k_pos, "j -> 1 j") - rearrange(q_pos, "i -> i 1")
474
+
475
+ relative_position_bucket = self._relative_position_bucket(
476
+ rel_pos, num_buckets=self.num_buckets, max_distance=self.max_distance
477
+ )
478
+
479
+ bias = self.relative_attention_bias(relative_position_bucket)
480
+ bias = rearrange(bias, "m n h -> 1 h m n")
481
+ return bias
482
+
483
+
484
+ def FeedForward(features: int, multiplier: int) -> nn.Module:
485
+ mid_features = features * multiplier
486
+ return nn.Sequential(
487
+ nn.Linear(in_features=features, out_features=mid_features),
488
+ nn.GELU(),
489
+ nn.Linear(in_features=mid_features, out_features=features),
490
+ )
491
+
492
+
493
+ class AttentionBase(nn.Module):
494
+ def __init__(
495
+ self,
496
+ features: int,
497
+ *,
498
+ head_features: int,
499
+ num_heads: int,
500
+ use_rel_pos: bool,
501
+ out_features: Optional[int] = None,
502
+ rel_pos_num_buckets: Optional[int] = None,
503
+ rel_pos_max_distance: Optional[int] = None,
504
+ ):
505
+ super().__init__()
506
+ self.scale = head_features ** -0.5
507
+ self.num_heads = num_heads
508
+ self.use_rel_pos = use_rel_pos
509
+ mid_features = head_features * num_heads
510
+
511
+ if use_rel_pos:
512
+ assert exists(rel_pos_num_buckets) and exists(rel_pos_max_distance)
513
+ self.rel_pos = RelativePositionBias(
514
+ num_buckets=rel_pos_num_buckets,
515
+ max_distance=rel_pos_max_distance,
516
+ num_heads=num_heads,
517
+ )
518
+ if out_features is None:
519
+ out_features = features
520
+
521
+ self.to_out = nn.Linear(in_features=mid_features, out_features=out_features)
522
+
523
+ def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
524
+ # Split heads
525
+ q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=self.num_heads)
526
+ # Compute similarity matrix
527
+ sim = einsum("... n d, ... m d -> ... n m", q, k)
528
+ sim = (sim + self.rel_pos(*sim.shape[-2:])) if self.use_rel_pos else sim
529
+ sim = sim * self.scale
530
+ # Get attention matrix with softmax
531
+ attn = sim.softmax(dim=-1)
532
+ # Compute values
533
+ out = einsum("... n m, ... m d -> ... n d", attn, v)
534
+ out = rearrange(out, "b h n d -> b n (h d)")
535
+ return self.to_out(out)
536
+
537
+
538
+ class Attention(nn.Module):
539
+ def __init__(
540
+ self,
541
+ features: int,
542
+ *,
543
+ head_features: int,
544
+ num_heads: int,
545
+ out_features: Optional[int] = None,
546
+ context_features: Optional[int] = None,
547
+ use_rel_pos: bool,
548
+ rel_pos_num_buckets: Optional[int] = None,
549
+ rel_pos_max_distance: Optional[int] = None,
550
+ ):
551
+ super().__init__()
552
+ self.context_features = context_features
553
+ mid_features = head_features * num_heads
554
+ context_features = default(context_features, features)
555
+
556
+ self.norm = nn.LayerNorm(features)
557
+ self.norm_context = nn.LayerNorm(context_features)
558
+ self.to_q = nn.Linear(
559
+ in_features=features, out_features=mid_features, bias=False
560
+ )
561
+ self.to_kv = nn.Linear(
562
+ in_features=context_features, out_features=mid_features * 2, bias=False
563
+ )
564
+
565
+ self.attention = AttentionBase(
566
+ features,
567
+ out_features=out_features,
568
+ num_heads=num_heads,
569
+ head_features=head_features,
570
+ use_rel_pos=use_rel_pos,
571
+ rel_pos_num_buckets=rel_pos_num_buckets,
572
+ rel_pos_max_distance=rel_pos_max_distance,
573
+ )
574
+
575
+ def forward(self, x: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
576
+ assert_message = "You must provide a context when using context_features"
577
+ assert not self.context_features or exists(context), assert_message
578
+ # Use context if provided
579
+ context = default(context, x)
580
+ # Normalize then compute q from input and k,v from context
581
+ x, context = self.norm(x), self.norm_context(context)
582
+ q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
583
+ # Compute and return attention
584
+ return self.attention(q, k, v)
585
+
586
+
587
+ """
588
+ Transformer Blocks
589
+ """
590
+
591
+
592
+ class TransformerBlock(nn.Module):
593
+ def __init__(
594
+ self,
595
+ features: int,
596
+ num_heads: int,
597
+ head_features: int,
598
+ multiplier: int,
599
+ use_rel_pos: bool,
600
+ rel_pos_num_buckets: Optional[int] = None,
601
+ rel_pos_max_distance: Optional[int] = None,
602
+ context_features: Optional[int] = None,
603
+ ):
604
+ super().__init__()
605
+
606
+ self.use_cross_attention = exists(context_features) and context_features > 0
607
+
608
+ self.attention = Attention(
609
+ features=features,
610
+ num_heads=num_heads,
611
+ head_features=head_features,
612
+ use_rel_pos=use_rel_pos,
613
+ rel_pos_num_buckets=rel_pos_num_buckets,
614
+ rel_pos_max_distance=rel_pos_max_distance,
615
+ )
616
+
617
+ if self.use_cross_attention:
618
+ self.cross_attention = Attention(
619
+ features=features,
620
+ num_heads=num_heads,
621
+ head_features=head_features,
622
+ context_features=context_features,
623
+ use_rel_pos=use_rel_pos,
624
+ rel_pos_num_buckets=rel_pos_num_buckets,
625
+ rel_pos_max_distance=rel_pos_max_distance,
626
+ )
627
+
628
+ self.feed_forward = FeedForward(features=features, multiplier=multiplier)
629
+
630
+ def forward(self, x: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
631
+ x = self.attention(x) + x
632
+ if self.use_cross_attention:
633
+ x = self.cross_attention(x, context=context) + x
634
+ x = self.feed_forward(x) + x
635
+ return x
636
+
637
+
638
+
639
+ """
640
+ Time Embeddings
641
+ """
642
+
643
+
644
+ class SinusoidalEmbedding(nn.Module):
645
+ def __init__(self, dim: int):
646
+ super().__init__()
647
+ self.dim = dim
648
+
649
+ def forward(self, x: Tensor) -> Tensor:
650
+ device, half_dim = x.device, self.dim // 2
651
+ emb = torch.tensor(log(10000) / (half_dim - 1), device=device)
652
+ emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
653
+ emb = rearrange(x, "i -> i 1") * rearrange(emb, "j -> 1 j")
654
+ return torch.cat((emb.sin(), emb.cos()), dim=-1)
655
+
656
+
657
+ class LearnedPositionalEmbedding(nn.Module):
658
+ """Used for continuous time"""
659
+
660
+ def __init__(self, dim: int):
661
+ super().__init__()
662
+ assert (dim % 2) == 0
663
+ half_dim = dim // 2
664
+ self.weights = nn.Parameter(torch.randn(half_dim))
665
+
666
+ def forward(self, x: Tensor) -> Tensor:
667
+ x = rearrange(x, "b -> b 1")
668
+ freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * pi
669
+ fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
670
+ fouriered = torch.cat((x, fouriered), dim=-1)
671
+ return fouriered
672
+
673
+
674
+ def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module:
675
+ return nn.Sequential(
676
+ LearnedPositionalEmbedding(dim),
677
+ nn.Linear(in_features=dim + 1, out_features=out_features),
678
+ )
679
+
680
+ class FixedEmbedding(nn.Module):
681
+ def __init__(self, max_length: int, features: int):
682
+ super().__init__()
683
+ self.max_length = max_length
684
+ self.embedding = nn.Embedding(max_length, features)
685
+
686
+ def forward(self, x: Tensor) -> Tensor:
687
+ batch_size, length, device = *x.shape[0:2], x.device
688
+ assert_message = "Input sequence length must be <= max_length"
689
+ assert length <= self.max_length, assert_message
690
+ position = torch.arange(length, device=device)
691
+ fixed_embedding = self.embedding(position)
692
+ fixed_embedding = repeat(fixed_embedding, "n d -> b n d", b=batch_size)
693
+ return fixed_embedding
styletts2/Modules/diffusion/sampler.py ADDED
@@ -0,0 +1,691 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from math import atan, cos, pi, sin, sqrt
2
+ from typing import Any, Callable, List, Optional, Tuple, Type
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from einops import rearrange, reduce
8
+ from torch import Tensor
9
+
10
+ from .utils import *
11
+
12
+ """
13
+ Diffusion Training
14
+ """
15
+
16
+ """ Distributions """
17
+
18
+
19
+ class Distribution:
20
+ def __call__(self, num_samples: int, device: torch.device):
21
+ raise NotImplementedError()
22
+
23
+
24
+ class LogNormalDistribution(Distribution):
25
+ def __init__(self, mean: float, std: float):
26
+ self.mean = mean
27
+ self.std = std
28
+
29
+ def __call__(
30
+ self, num_samples: int, device: torch.device = torch.device("cpu")
31
+ ) -> Tensor:
32
+ normal = self.mean + self.std * torch.randn((num_samples,), device=device)
33
+ return normal.exp()
34
+
35
+
36
+ class UniformDistribution(Distribution):
37
+ def __call__(self, num_samples: int, device: torch.device = torch.device("cpu")):
38
+ return torch.rand(num_samples, device=device)
39
+
40
+
41
+ class VKDistribution(Distribution):
42
+ def __init__(
43
+ self,
44
+ min_value: float = 0.0,
45
+ max_value: float = float("inf"),
46
+ sigma_data: float = 1.0,
47
+ ):
48
+ self.min_value = min_value
49
+ self.max_value = max_value
50
+ self.sigma_data = sigma_data
51
+
52
+ def __call__(
53
+ self, num_samples: int, device: torch.device = torch.device("cpu")
54
+ ) -> Tensor:
55
+ sigma_data = self.sigma_data
56
+ min_cdf = atan(self.min_value / sigma_data) * 2 / pi
57
+ max_cdf = atan(self.max_value / sigma_data) * 2 / pi
58
+ u = (max_cdf - min_cdf) * torch.randn((num_samples,), device=device) + min_cdf
59
+ return torch.tan(u * pi / 2) * sigma_data
60
+
61
+
62
+ """ Diffusion Classes """
63
+
64
+
65
+ def pad_dims(x: Tensor, ndim: int) -> Tensor:
66
+ # Pads additional ndims to the right of the tensor
67
+ return x.view(*x.shape, *((1,) * ndim))
68
+
69
+
70
+ def clip(x: Tensor, dynamic_threshold: float = 0.0):
71
+ if dynamic_threshold == 0.0:
72
+ return x.clamp(-1.0, 1.0)
73
+ else:
74
+ # Dynamic thresholding
75
+ # Find dynamic threshold quantile for each batch
76
+ x_flat = rearrange(x, "b ... -> b (...)")
77
+ scale = torch.quantile(x_flat.abs(), dynamic_threshold, dim=-1)
78
+ # Clamp to a min of 1.0
79
+ scale.clamp_(min=1.0)
80
+ # Clamp all values and scale
81
+ scale = pad_dims(scale, ndim=x.ndim - scale.ndim)
82
+ x = x.clamp(-scale, scale) / scale
83
+ return x
84
+
85
+
86
+ def to_batch(
87
+ batch_size: int,
88
+ device: torch.device,
89
+ x: Optional[float] = None,
90
+ xs: Optional[Tensor] = None,
91
+ ) -> Tensor:
92
+ assert exists(x) ^ exists(xs), "Either x or xs must be provided"
93
+ # If x provided use the same for all batch items
94
+ if exists(x):
95
+ xs = torch.full(size=(batch_size,), fill_value=x).to(device)
96
+ assert exists(xs)
97
+ return xs
98
+
99
+
100
+ class Diffusion(nn.Module):
101
+
102
+ alias: str = ""
103
+
104
+ """Base diffusion class"""
105
+
106
+ def denoise_fn(
107
+ self,
108
+ x_noisy: Tensor,
109
+ sigmas: Optional[Tensor] = None,
110
+ sigma: Optional[float] = None,
111
+ **kwargs,
112
+ ) -> Tensor:
113
+ raise NotImplementedError("Diffusion class missing denoise_fn")
114
+
115
+ def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
116
+ raise NotImplementedError("Diffusion class missing forward function")
117
+
118
+
119
+ class VDiffusion(Diffusion):
120
+
121
+ alias = "v"
122
+
123
+ def __init__(self, net: nn.Module, *, sigma_distribution: Distribution):
124
+ super().__init__()
125
+ self.net = net
126
+ self.sigma_distribution = sigma_distribution
127
+
128
+ def get_alpha_beta(self, sigmas: Tensor) -> Tuple[Tensor, Tensor]:
129
+ angle = sigmas * pi / 2
130
+ alpha = torch.cos(angle)
131
+ beta = torch.sin(angle)
132
+ return alpha, beta
133
+
134
+ def denoise_fn(
135
+ self,
136
+ x_noisy: Tensor,
137
+ sigmas: Optional[Tensor] = None,
138
+ sigma: Optional[float] = None,
139
+ **kwargs,
140
+ ) -> Tensor:
141
+ batch_size, device = x_noisy.shape[0], x_noisy.device
142
+ sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
143
+ return self.net(x_noisy, sigmas, **kwargs)
144
+
145
+ def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
146
+ batch_size, device = x.shape[0], x.device
147
+
148
+ # Sample amount of noise to add for each batch element
149
+ sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
150
+ sigmas_padded = rearrange(sigmas, "b -> b 1 1")
151
+
152
+ # Get noise
153
+ noise = default(noise, lambda: torch.randn_like(x))
154
+
155
+ # Combine input and noise weighted by half-circle
156
+ alpha, beta = self.get_alpha_beta(sigmas_padded)
157
+ x_noisy = x * alpha + noise * beta
158
+ x_target = noise * alpha - x * beta
159
+
160
+ # Denoise and return loss
161
+ x_denoised = self.denoise_fn(x_noisy, sigmas, **kwargs)
162
+ return F.mse_loss(x_denoised, x_target)
163
+
164
+
165
+ class KDiffusion(Diffusion):
166
+ """Elucidated Diffusion (Karras et al. 2022): https://arxiv.org/abs/2206.00364"""
167
+
168
+ alias = "k"
169
+
170
+ def __init__(
171
+ self,
172
+ net: nn.Module,
173
+ *,
174
+ sigma_distribution: Distribution,
175
+ sigma_data: float, # data distribution standard deviation
176
+ dynamic_threshold: float = 0.0,
177
+ ):
178
+ super().__init__()
179
+ self.net = net
180
+ self.sigma_data = sigma_data
181
+ self.sigma_distribution = sigma_distribution
182
+ self.dynamic_threshold = dynamic_threshold
183
+
184
+ def get_scale_weights(self, sigmas: Tensor) -> Tuple[Tensor, ...]:
185
+ sigma_data = self.sigma_data
186
+ c_noise = torch.log(sigmas) * 0.25
187
+ sigmas = rearrange(sigmas, "b -> b 1 1")
188
+ c_skip = (sigma_data ** 2) / (sigmas ** 2 + sigma_data ** 2)
189
+ c_out = sigmas * sigma_data * (sigma_data ** 2 + sigmas ** 2) ** -0.5
190
+ c_in = (sigmas ** 2 + sigma_data ** 2) ** -0.5
191
+ return c_skip, c_out, c_in, c_noise
192
+
193
+ def denoise_fn(
194
+ self,
195
+ x_noisy: Tensor,
196
+ sigmas: Optional[Tensor] = None,
197
+ sigma: Optional[float] = None,
198
+ **kwargs,
199
+ ) -> Tensor:
200
+ batch_size, device = x_noisy.shape[0], x_noisy.device
201
+ sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
202
+
203
+ # Predict network output and add skip connection
204
+ c_skip, c_out, c_in, c_noise = self.get_scale_weights(sigmas)
205
+ x_pred = self.net(c_in * x_noisy, c_noise, **kwargs)
206
+ x_denoised = c_skip * x_noisy + c_out * x_pred
207
+
208
+ return x_denoised
209
+
210
+ def loss_weight(self, sigmas: Tensor) -> Tensor:
211
+ # Computes weight depending on data distribution
212
+ return (sigmas ** 2 + self.sigma_data ** 2) * (sigmas * self.sigma_data) ** -2
213
+
214
+ def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
215
+ batch_size, device = x.shape[0], x.device
216
+ from einops import rearrange, reduce
217
+
218
+ # Sample amount of noise to add for each batch element
219
+ sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
220
+ sigmas_padded = rearrange(sigmas, "b -> b 1 1")
221
+
222
+ # Add noise to input
223
+ noise = default(noise, lambda: torch.randn_like(x))
224
+ x_noisy = x + sigmas_padded * noise
225
+
226
+ # Compute denoised values
227
+ x_denoised = self.denoise_fn(x_noisy, sigmas=sigmas, **kwargs)
228
+
229
+ # Compute weighted loss
230
+ losses = F.mse_loss(x_denoised, x, reduction="none")
231
+ losses = reduce(losses, "b ... -> b", "mean")
232
+ losses = losses * self.loss_weight(sigmas)
233
+ loss = losses.mean()
234
+ return loss
235
+
236
+
237
+ class VKDiffusion(Diffusion):
238
+
239
+ alias = "vk"
240
+
241
+ def __init__(self, net: nn.Module, *, sigma_distribution: Distribution):
242
+ super().__init__()
243
+ self.net = net
244
+ self.sigma_distribution = sigma_distribution
245
+
246
+ def get_scale_weights(self, sigmas: Tensor) -> Tuple[Tensor, ...]:
247
+ sigma_data = 1.0
248
+ sigmas = rearrange(sigmas, "b -> b 1 1")
249
+ c_skip = (sigma_data ** 2) / (sigmas ** 2 + sigma_data ** 2)
250
+ c_out = -sigmas * sigma_data * (sigma_data ** 2 + sigmas ** 2) ** -0.5
251
+ c_in = (sigmas ** 2 + sigma_data ** 2) ** -0.5
252
+ return c_skip, c_out, c_in
253
+
254
+ def sigma_to_t(self, sigmas: Tensor) -> Tensor:
255
+ return sigmas.atan() / pi * 2
256
+
257
+ def t_to_sigma(self, t: Tensor) -> Tensor:
258
+ return (t * pi / 2).tan()
259
+
260
+ def denoise_fn(
261
+ self,
262
+ x_noisy: Tensor,
263
+ sigmas: Optional[Tensor] = None,
264
+ sigma: Optional[float] = None,
265
+ **kwargs,
266
+ ) -> Tensor:
267
+ batch_size, device = x_noisy.shape[0], x_noisy.device
268
+ sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
269
+
270
+ # Predict network output and add skip connection
271
+ c_skip, c_out, c_in = self.get_scale_weights(sigmas)
272
+ x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs)
273
+ x_denoised = c_skip * x_noisy + c_out * x_pred
274
+ return x_denoised
275
+
276
+ def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
277
+ batch_size, device = x.shape[0], x.device
278
+
279
+ # Sample amount of noise to add for each batch element
280
+ sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
281
+ sigmas_padded = rearrange(sigmas, "b -> b 1 1")
282
+
283
+ # Add noise to input
284
+ noise = default(noise, lambda: torch.randn_like(x))
285
+ x_noisy = x + sigmas_padded * noise
286
+
287
+ # Compute model output
288
+ c_skip, c_out, c_in = self.get_scale_weights(sigmas)
289
+ x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs)
290
+
291
+ # Compute v-objective target
292
+ v_target = (x - c_skip * x_noisy) / (c_out + 1e-7)
293
+
294
+ # Compute loss
295
+ loss = F.mse_loss(x_pred, v_target)
296
+ return loss
297
+
298
+
299
+ """
300
+ Diffusion Sampling
301
+ """
302
+
303
+ """ Schedules """
304
+
305
+
306
+ class Schedule(nn.Module):
307
+ """Interface used by different sampling schedules"""
308
+
309
+ def forward(self, num_steps: int, device: torch.device) -> Tensor:
310
+ raise NotImplementedError()
311
+
312
+
313
+ class LinearSchedule(Schedule):
314
+ def forward(self, num_steps: int, device: Any) -> Tensor:
315
+ sigmas = torch.linspace(1, 0, num_steps + 1)[:-1]
316
+ return sigmas
317
+
318
+
319
+ class KarrasSchedule(Schedule):
320
+ """https://arxiv.org/abs/2206.00364 equation 5"""
321
+
322
+ def __init__(self, sigma_min: float, sigma_max: float, rho: float = 7.0):
323
+ super().__init__()
324
+ self.sigma_min = sigma_min
325
+ self.sigma_max = sigma_max
326
+ self.rho = rho
327
+
328
+ def forward(self, num_steps: int, device: Any) -> Tensor:
329
+ rho_inv = 1.0 / self.rho
330
+ steps = torch.arange(num_steps, device=device, dtype=torch.float32)
331
+ sigmas = (
332
+ self.sigma_max ** rho_inv
333
+ + (steps / (num_steps - 1))
334
+ * (self.sigma_min ** rho_inv - self.sigma_max ** rho_inv)
335
+ ) ** self.rho
336
+ sigmas = F.pad(sigmas, pad=(0, 1), value=0.0)
337
+ return sigmas
338
+
339
+
340
+ """ Samplers """
341
+
342
+
343
+ class Sampler(nn.Module):
344
+
345
+ diffusion_types: List[Type[Diffusion]] = []
346
+
347
+ def forward(
348
+ self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
349
+ ) -> Tensor:
350
+ raise NotImplementedError()
351
+
352
+ def inpaint(
353
+ self,
354
+ source: Tensor,
355
+ mask: Tensor,
356
+ fn: Callable,
357
+ sigmas: Tensor,
358
+ num_steps: int,
359
+ num_resamples: int,
360
+ ) -> Tensor:
361
+ raise NotImplementedError("Inpainting not available with current sampler")
362
+
363
+
364
+ class VSampler(Sampler):
365
+
366
+ diffusion_types = [VDiffusion]
367
+
368
+ def get_alpha_beta(self, sigma: float) -> Tuple[float, float]:
369
+ angle = sigma * pi / 2
370
+ alpha = cos(angle)
371
+ beta = sin(angle)
372
+ return alpha, beta
373
+
374
+ def forward(
375
+ self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
376
+ ) -> Tensor:
377
+ x = sigmas[0] * noise
378
+ alpha, beta = self.get_alpha_beta(sigmas[0].item())
379
+
380
+ for i in range(num_steps - 1):
381
+ is_last = i == num_steps - 1
382
+
383
+ x_denoised = fn(x, sigma=sigmas[i])
384
+ x_pred = x * alpha - x_denoised * beta
385
+ x_eps = x * beta + x_denoised * alpha
386
+
387
+ if not is_last:
388
+ alpha, beta = self.get_alpha_beta(sigmas[i + 1].item())
389
+ x = x_pred * alpha + x_eps * beta
390
+
391
+ return x_pred
392
+
393
+
394
+ class KarrasSampler(Sampler):
395
+ """https://arxiv.org/abs/2206.00364 algorithm 1"""
396
+
397
+ diffusion_types = [KDiffusion, VKDiffusion]
398
+
399
+ def __init__(
400
+ self,
401
+ s_tmin: float = 0,
402
+ s_tmax: float = float("inf"),
403
+ s_churn: float = 0.0,
404
+ s_noise: float = 1.0,
405
+ ):
406
+ super().__init__()
407
+ self.s_tmin = s_tmin
408
+ self.s_tmax = s_tmax
409
+ self.s_noise = s_noise
410
+ self.s_churn = s_churn
411
+
412
+ def step(
413
+ self, x: Tensor, fn: Callable, sigma: float, sigma_next: float, gamma: float
414
+ ) -> Tensor:
415
+ """Algorithm 2 (step)"""
416
+ # Select temporarily increased noise level
417
+ sigma_hat = sigma + gamma * sigma
418
+ # Add noise to move from sigma to sigma_hat
419
+ epsilon = self.s_noise * torch.randn_like(x)
420
+ x_hat = x + sqrt(sigma_hat ** 2 - sigma ** 2) * epsilon
421
+ # Evaluate ∂x/∂sigma at sigma_hat
422
+ d = (x_hat - fn(x_hat, sigma=sigma_hat)) / sigma_hat
423
+ # Take euler step from sigma_hat to sigma_next
424
+ x_next = x_hat + (sigma_next - sigma_hat) * d
425
+ # Second order correction
426
+ if sigma_next != 0:
427
+ model_out_next = fn(x_next, sigma=sigma_next)
428
+ d_prime = (x_next - model_out_next) / sigma_next
429
+ x_next = x_hat + 0.5 * (sigma - sigma_hat) * (d + d_prime)
430
+ return x_next
431
+
432
+ def forward(
433
+ self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
434
+ ) -> Tensor:
435
+ x = sigmas[0] * noise
436
+ # Compute gammas
437
+ gammas = torch.where(
438
+ (sigmas >= self.s_tmin) & (sigmas <= self.s_tmax),
439
+ min(self.s_churn / num_steps, sqrt(2) - 1),
440
+ 0.0,
441
+ )
442
+ # Denoise to sample
443
+ for i in range(num_steps - 1):
444
+ x = self.step(
445
+ x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1], gamma=gammas[i] # type: ignore # noqa
446
+ )
447
+
448
+ return x
449
+
450
+
451
+ class AEulerSampler(Sampler):
452
+
453
+ diffusion_types = [KDiffusion, VKDiffusion]
454
+
455
+ def get_sigmas(self, sigma: float, sigma_next: float) -> Tuple[float, float]:
456
+ sigma_up = sqrt(sigma_next ** 2 * (sigma ** 2 - sigma_next ** 2) / sigma ** 2)
457
+ sigma_down = sqrt(sigma_next ** 2 - sigma_up ** 2)
458
+ return sigma_up, sigma_down
459
+
460
+ def step(self, x: Tensor, fn: Callable, sigma: float, sigma_next: float) -> Tensor:
461
+ # Sigma steps
462
+ sigma_up, sigma_down = self.get_sigmas(sigma, sigma_next)
463
+ # Derivative at sigma (∂x/∂sigma)
464
+ d = (x - fn(x, sigma=sigma)) / sigma
465
+ # Euler method
466
+ x_next = x + d * (sigma_down - sigma)
467
+ # Add randomness
468
+ x_next = x_next + torch.randn_like(x) * sigma_up
469
+ return x_next
470
+
471
+ def forward(
472
+ self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
473
+ ) -> Tensor:
474
+ x = sigmas[0] * noise
475
+ # Denoise to sample
476
+ for i in range(num_steps - 1):
477
+ x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
478
+ return x
479
+
480
+
481
+ class ADPM2Sampler(Sampler):
482
+ """https://www.desmos.com/calculator/jbxjlqd9mb"""
483
+
484
+ diffusion_types = [KDiffusion, VKDiffusion]
485
+
486
+ def __init__(self, rho: float = 1.0):
487
+ super().__init__()
488
+ self.rho = rho
489
+
490
+ def get_sigmas(self, sigma: float, sigma_next: float) -> Tuple[float, float, float]:
491
+ r = self.rho
492
+ sigma_up = sqrt(sigma_next ** 2 * (sigma ** 2 - sigma_next ** 2) / sigma ** 2)
493
+ sigma_down = sqrt(sigma_next ** 2 - sigma_up ** 2)
494
+ sigma_mid = ((sigma ** (1 / r) + sigma_down ** (1 / r)) / 2) ** r
495
+ return sigma_up, sigma_down, sigma_mid
496
+
497
+ def step(self, x: Tensor, fn: Callable, sigma: float, sigma_next: float) -> Tensor:
498
+ # Sigma steps
499
+ sigma_up, sigma_down, sigma_mid = self.get_sigmas(sigma, sigma_next)
500
+ # Derivative at sigma (∂x/∂sigma)
501
+ d = (x - fn(x, sigma=sigma)) / sigma
502
+ # Denoise to midpoint
503
+ x_mid = x + d * (sigma_mid - sigma)
504
+ # Derivative at sigma_mid (∂x_mid/∂sigma_mid)
505
+ d_mid = (x_mid - fn(x_mid, sigma=sigma_mid)) / sigma_mid
506
+ # Denoise to next
507
+ x = x + d_mid * (sigma_down - sigma)
508
+ # Add randomness
509
+ x_next = x + torch.randn_like(x) * sigma_up
510
+ return x_next
511
+
512
+ def forward(
513
+ self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
514
+ ) -> Tensor:
515
+ x = sigmas[0] * noise
516
+ # Denoise to sample
517
+ for i in range(num_steps - 1):
518
+ x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
519
+ return x
520
+
521
+ def inpaint(
522
+ self,
523
+ source: Tensor,
524
+ mask: Tensor,
525
+ fn: Callable,
526
+ sigmas: Tensor,
527
+ num_steps: int,
528
+ num_resamples: int,
529
+ ) -> Tensor:
530
+ x = sigmas[0] * torch.randn_like(source)
531
+
532
+ for i in range(num_steps - 1):
533
+ # Noise source to current noise level
534
+ source_noisy = source + sigmas[i] * torch.randn_like(source)
535
+ for r in range(num_resamples):
536
+ # Merge noisy source and current then denoise
537
+ x = source_noisy * mask + x * ~mask
538
+ x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
539
+ # Renoise if not last resample step
540
+ if r < num_resamples - 1:
541
+ sigma = sqrt(sigmas[i] ** 2 - sigmas[i + 1] ** 2)
542
+ x = x + sigma * torch.randn_like(x)
543
+
544
+ return source * mask + x * ~mask
545
+
546
+
547
+ """ Main Classes """
548
+
549
+
550
+ class DiffusionSampler(nn.Module):
551
+ def __init__(
552
+ self,
553
+ diffusion: Diffusion,
554
+ *,
555
+ sampler: Sampler,
556
+ sigma_schedule: Schedule,
557
+ num_steps: Optional[int] = None,
558
+ clamp: bool = True,
559
+ ):
560
+ super().__init__()
561
+ self.denoise_fn = diffusion.denoise_fn
562
+ self.sampler = sampler
563
+ self.sigma_schedule = sigma_schedule
564
+ self.num_steps = num_steps
565
+ self.clamp = clamp
566
+
567
+ # Check sampler is compatible with diffusion type
568
+ sampler_class = sampler.__class__.__name__
569
+ diffusion_class = diffusion.__class__.__name__
570
+ message = f"{sampler_class} incompatible with {diffusion_class}"
571
+ assert diffusion.alias in [t.alias for t in sampler.diffusion_types], message
572
+
573
+ def forward(
574
+ self, noise: Tensor, num_steps: Optional[int] = None, **kwargs
575
+ ) -> Tensor:
576
+ device = noise.device
577
+ num_steps = default(num_steps, self.num_steps) # type: ignore
578
+ assert exists(num_steps), "Parameter `num_steps` must be provided"
579
+ # Compute sigmas using schedule
580
+ sigmas = self.sigma_schedule(num_steps, device)
581
+ # Append additional kwargs to denoise function (used e.g. for conditional unet)
582
+ fn = lambda *a, **ka: self.denoise_fn(*a, **{**ka, **kwargs}) # noqa
583
+ # Sample using sampler
584
+ x = self.sampler(noise, fn=fn, sigmas=sigmas, num_steps=num_steps)
585
+ x = x.clamp(-1.0, 1.0) if self.clamp else x
586
+ return x
587
+
588
+
589
+ class DiffusionInpainter(nn.Module):
590
+ def __init__(
591
+ self,
592
+ diffusion: Diffusion,
593
+ *,
594
+ num_steps: int,
595
+ num_resamples: int,
596
+ sampler: Sampler,
597
+ sigma_schedule: Schedule,
598
+ ):
599
+ super().__init__()
600
+ self.denoise_fn = diffusion.denoise_fn
601
+ self.num_steps = num_steps
602
+ self.num_resamples = num_resamples
603
+ self.inpaint_fn = sampler.inpaint
604
+ self.sigma_schedule = sigma_schedule
605
+
606
+ @torch.no_grad()
607
+ def forward(self, inpaint: Tensor, inpaint_mask: Tensor) -> Tensor:
608
+ x = self.inpaint_fn(
609
+ source=inpaint,
610
+ mask=inpaint_mask,
611
+ fn=self.denoise_fn,
612
+ sigmas=self.sigma_schedule(self.num_steps, inpaint.device),
613
+ num_steps=self.num_steps,
614
+ num_resamples=self.num_resamples,
615
+ )
616
+ return x
617
+
618
+
619
+ def sequential_mask(like: Tensor, start: int) -> Tensor:
620
+ length, device = like.shape[2], like.device
621
+ mask = torch.ones_like(like, dtype=torch.bool)
622
+ mask[:, :, start:] = torch.zeros((length - start,), device=device)
623
+ return mask
624
+
625
+
626
+ class SpanBySpanComposer(nn.Module):
627
+ def __init__(
628
+ self,
629
+ inpainter: DiffusionInpainter,
630
+ *,
631
+ num_spans: int,
632
+ ):
633
+ super().__init__()
634
+ self.inpainter = inpainter
635
+ self.num_spans = num_spans
636
+
637
+ def forward(self, start: Tensor, keep_start: bool = False) -> Tensor:
638
+ half_length = start.shape[2] // 2
639
+
640
+ spans = list(start.chunk(chunks=2, dim=-1)) if keep_start else []
641
+ # Inpaint second half from first half
642
+ inpaint = torch.zeros_like(start)
643
+ inpaint[:, :, :half_length] = start[:, :, half_length:]
644
+ inpaint_mask = sequential_mask(like=start, start=half_length)
645
+
646
+ for i in range(self.num_spans):
647
+ # Inpaint second half
648
+ span = self.inpainter(inpaint=inpaint, inpaint_mask=inpaint_mask)
649
+ # Replace first half with generated second half
650
+ second_half = span[:, :, half_length:]
651
+ inpaint[:, :, :half_length] = second_half
652
+ # Save generated span
653
+ spans.append(second_half)
654
+
655
+ return torch.cat(spans, dim=2)
656
+
657
+
658
+ class XDiffusion(nn.Module):
659
+ def __init__(self, type: str, net: nn.Module, **kwargs):
660
+ super().__init__()
661
+
662
+ diffusion_classes = [VDiffusion, KDiffusion, VKDiffusion]
663
+ aliases = [t.alias for t in diffusion_classes] # type: ignore
664
+ message = f"type='{type}' must be one of {*aliases,}"
665
+ assert type in aliases, message
666
+ self.net = net
667
+
668
+ for XDiffusion in diffusion_classes:
669
+ if XDiffusion.alias == type: # type: ignore
670
+ self.diffusion = XDiffusion(net=net, **kwargs)
671
+
672
+ def forward(self, *args, **kwargs) -> Tensor:
673
+ return self.diffusion(*args, **kwargs)
674
+
675
+ def sample(
676
+ self,
677
+ noise: Tensor,
678
+ num_steps: int,
679
+ sigma_schedule: Schedule,
680
+ sampler: Sampler,
681
+ clamp: bool,
682
+ **kwargs,
683
+ ) -> Tensor:
684
+ diffusion_sampler = DiffusionSampler(
685
+ diffusion=self.diffusion,
686
+ sampler=sampler,
687
+ sigma_schedule=sigma_schedule,
688
+ num_steps=num_steps,
689
+ clamp=clamp,
690
+ )
691
+ return diffusion_sampler(noise, **kwargs)
styletts2/Modules/diffusion/utils.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import reduce
2
+ from inspect import isfunction
3
+ from math import ceil, floor, log2, pi
4
+ from typing import Callable, Dict, List, Optional, Sequence, Tuple, TypeVar, Union
5
+
6
+ import torch
7
+ import torch.nn.functional as F
8
+ from einops import rearrange
9
+ from torch import Generator, Tensor
10
+ from typing_extensions import TypeGuard
11
+
12
+ T = TypeVar("T")
13
+
14
+
15
+ def exists(val: Optional[T]) -> TypeGuard[T]:
16
+ return val is not None
17
+
18
+
19
+ def iff(condition: bool, value: T) -> Optional[T]:
20
+ return value if condition else None
21
+
22
+
23
+ def is_sequence(obj: T) -> TypeGuard[Union[list, tuple]]:
24
+ return isinstance(obj, list) or isinstance(obj, tuple)
25
+
26
+
27
+ def default(val: Optional[T], d: Union[Callable[..., T], T]) -> T:
28
+ if exists(val):
29
+ return val
30
+ return d() if isfunction(d) else d
31
+
32
+
33
+ def to_list(val: Union[T, Sequence[T]]) -> List[T]:
34
+ if isinstance(val, tuple):
35
+ return list(val)
36
+ if isinstance(val, list):
37
+ return val
38
+ return [val] # type: ignore
39
+
40
+
41
+ def prod(vals: Sequence[int]) -> int:
42
+ return reduce(lambda x, y: x * y, vals)
43
+
44
+
45
+ def closest_power_2(x: float) -> int:
46
+ exponent = log2(x)
47
+ distance_fn = lambda z: abs(x - 2 ** z) # noqa
48
+ exponent_closest = min((floor(exponent), ceil(exponent)), key=distance_fn)
49
+ return 2 ** int(exponent_closest)
50
+
51
+ def rand_bool(shape, proba, device = None):
52
+ if proba == 1:
53
+ return torch.ones(shape, device=device, dtype=torch.bool)
54
+ elif proba == 0:
55
+ return torch.zeros(shape, device=device, dtype=torch.bool)
56
+ else:
57
+ return torch.bernoulli(torch.full(shape, proba, device=device)).to(torch.bool)
58
+
59
+
60
+ """
61
+ Kwargs Utils
62
+ """
63
+
64
+
65
+ def group_dict_by_prefix(prefix: str, d: Dict) -> Tuple[Dict, Dict]:
66
+ return_dicts: Tuple[Dict, Dict] = ({}, {})
67
+ for key in d.keys():
68
+ no_prefix = int(not key.startswith(prefix))
69
+ return_dicts[no_prefix][key] = d[key]
70
+ return return_dicts
71
+
72
+
73
+ def groupby(prefix: str, d: Dict, keep_prefix: bool = False) -> Tuple[Dict, Dict]:
74
+ kwargs_with_prefix, kwargs = group_dict_by_prefix(prefix, d)
75
+ if keep_prefix:
76
+ return kwargs_with_prefix, kwargs
77
+ kwargs_no_prefix = {k[len(prefix) :]: v for k, v in kwargs_with_prefix.items()}
78
+ return kwargs_no_prefix, kwargs
79
+
80
+
81
+ def prefix_dict(prefix: str, d: Dict) -> Dict:
82
+ return {prefix + str(k): v for k, v in d.items()}
styletts2/Modules/discriminators.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import torch.nn as nn
4
+ from torch.nn import Conv1d, AvgPool1d, Conv2d
5
+ from torch.nn.utils import weight_norm, spectral_norm
6
+
7
+ from .utils import get_padding
8
+
9
+ LRELU_SLOPE = 0.1
10
+
11
+ def stft(x, fft_size, hop_size, win_length, window):
12
+ """Perform STFT and convert to magnitude spectrogram.
13
+ Args:
14
+ x (Tensor): Input signal tensor (B, T).
15
+ fft_size (int): FFT size.
16
+ hop_size (int): Hop size.
17
+ win_length (int): Window length.
18
+ window (str): Window function type.
19
+ Returns:
20
+ Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
21
+ """
22
+ x_stft = torch.stft(x, fft_size, hop_size, win_length, window,
23
+ return_complex=True)
24
+ real = x_stft[..., 0]
25
+ imag = x_stft[..., 1]
26
+
27
+ return torch.abs(x_stft).transpose(2, 1)
28
+
29
+ class SpecDiscriminator(nn.Module):
30
+ """docstring for Discriminator."""
31
+
32
+ def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", use_spectral_norm=False):
33
+ super(SpecDiscriminator, self).__init__()
34
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
35
+ self.fft_size = fft_size
36
+ self.shift_size = shift_size
37
+ self.win_length = win_length
38
+ self.window = getattr(torch, window)(win_length)
39
+ self.discriminators = nn.ModuleList([
40
+ norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))),
41
+ norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
42
+ norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
43
+ norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
44
+ norm_f(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1,1), padding=(1, 1))),
45
+ ])
46
+
47
+ self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1))
48
+
49
+ def forward(self, y):
50
+
51
+ fmap = []
52
+ y = y.squeeze(1)
53
+ y = stft(y, self.fft_size, self.shift_size, self.win_length, self.window.to(y.get_device()))
54
+ y = y.unsqueeze(1)
55
+ for i, d in enumerate(self.discriminators):
56
+ y = d(y)
57
+ y = F.leaky_relu(y, LRELU_SLOPE)
58
+ fmap.append(y)
59
+
60
+ y = self.out(y)
61
+ fmap.append(y)
62
+
63
+ return torch.flatten(y, 1, -1), fmap
64
+
65
+ class MultiResSpecDiscriminator(torch.nn.Module):
66
+
67
+ def __init__(self,
68
+ fft_sizes=[1024, 2048, 512],
69
+ hop_sizes=[120, 240, 50],
70
+ win_lengths=[600, 1200, 240],
71
+ window="hann_window"):
72
+
73
+ super(MultiResSpecDiscriminator, self).__init__()
74
+ self.discriminators = nn.ModuleList([
75
+ SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window),
76
+ SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window),
77
+ SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window)
78
+ ])
79
+
80
+ def forward(self, y, y_hat):
81
+ y_d_rs = []
82
+ y_d_gs = []
83
+ fmap_rs = []
84
+ fmap_gs = []
85
+ for i, d in enumerate(self.discriminators):
86
+ y_d_r, fmap_r = d(y)
87
+ y_d_g, fmap_g = d(y_hat)
88
+ y_d_rs.append(y_d_r)
89
+ fmap_rs.append(fmap_r)
90
+ y_d_gs.append(y_d_g)
91
+ fmap_gs.append(fmap_g)
92
+
93
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
94
+
95
+
96
+ class DiscriminatorP(torch.nn.Module):
97
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
98
+ super(DiscriminatorP, self).__init__()
99
+ self.period = period
100
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
101
+ self.convs = nn.ModuleList([
102
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
103
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
104
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
105
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
106
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
107
+ ])
108
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
109
+
110
+ def forward(self, x):
111
+ fmap = []
112
+
113
+ # 1d to 2d
114
+ b, c, t = x.shape
115
+ if t % self.period != 0: # pad first
116
+ n_pad = self.period - (t % self.period)
117
+ x = F.pad(x, (0, n_pad), "reflect")
118
+ t = t + n_pad
119
+ x = x.view(b, c, t // self.period, self.period)
120
+
121
+ for l in self.convs:
122
+ x = l(x)
123
+ x = F.leaky_relu(x, LRELU_SLOPE)
124
+ fmap.append(x)
125
+ x = self.conv_post(x)
126
+ fmap.append(x)
127
+ x = torch.flatten(x, 1, -1)
128
+
129
+ return x, fmap
130
+
131
+
132
+ class MultiPeriodDiscriminator(torch.nn.Module):
133
+ def __init__(self):
134
+ super(MultiPeriodDiscriminator, self).__init__()
135
+ self.discriminators = nn.ModuleList([
136
+ DiscriminatorP(2),
137
+ DiscriminatorP(3),
138
+ DiscriminatorP(5),
139
+ DiscriminatorP(7),
140
+ DiscriminatorP(11),
141
+ ])
142
+
143
+ def forward(self, y, y_hat):
144
+ y_d_rs = []
145
+ y_d_gs = []
146
+ fmap_rs = []
147
+ fmap_gs = []
148
+ for i, d in enumerate(self.discriminators):
149
+ y_d_r, fmap_r = d(y)
150
+ y_d_g, fmap_g = d(y_hat)
151
+ y_d_rs.append(y_d_r)
152
+ fmap_rs.append(fmap_r)
153
+ y_d_gs.append(y_d_g)
154
+ fmap_gs.append(fmap_g)
155
+
156
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
157
+
158
+ class WavLMDiscriminator(nn.Module):
159
+ """docstring for Discriminator."""
160
+
161
+ def __init__(self, slm_hidden=768,
162
+ slm_layers=13,
163
+ initial_channel=64,
164
+ use_spectral_norm=False):
165
+ super(WavLMDiscriminator, self).__init__()
166
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
167
+ self.pre = norm_f(Conv1d(slm_hidden * slm_layers, initial_channel, 1, 1, padding=0))
168
+
169
+ self.convs = nn.ModuleList([
170
+ norm_f(nn.Conv1d(initial_channel, initial_channel * 2, kernel_size=5, padding=2)),
171
+ norm_f(nn.Conv1d(initial_channel * 2, initial_channel * 4, kernel_size=5, padding=2)),
172
+ norm_f(nn.Conv1d(initial_channel * 4, initial_channel * 4, 5, 1, padding=2)),
173
+ ])
174
+
175
+ self.conv_post = norm_f(Conv1d(initial_channel * 4, 1, 3, 1, padding=1))
176
+
177
+ def forward(self, x):
178
+ x = self.pre(x)
179
+
180
+ fmap = []
181
+ for l in self.convs:
182
+ x = l(x)
183
+ x = F.leaky_relu(x, LRELU_SLOPE)
184
+ fmap.append(x)
185
+ x = self.conv_post(x)
186
+ x = torch.flatten(x, 1, -1)
187
+
188
+ return x
styletts2/Modules/hifigan.py ADDED
@@ -0,0 +1,477 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import torch.nn as nn
4
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
5
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
6
+ from .utils import init_weights, get_padding
7
+
8
+ import math
9
+ import random
10
+ import numpy as np
11
+
12
+ LRELU_SLOPE = 0.1
13
+
14
+ class AdaIN1d(nn.Module):
15
+ def __init__(self, style_dim, num_features):
16
+ super().__init__()
17
+ self.norm = nn.InstanceNorm1d(num_features, affine=False)
18
+ self.fc = nn.Linear(style_dim, num_features*2)
19
+
20
+ def forward(self, x, s):
21
+ h = self.fc(s)
22
+ h = h.view(h.size(0), h.size(1), 1)
23
+ gamma, beta = torch.chunk(h, chunks=2, dim=1)
24
+ return (1 + gamma) * self.norm(x) + beta
25
+
26
+ class AdaINResBlock1(torch.nn.Module):
27
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
28
+ super(AdaINResBlock1, self).__init__()
29
+ self.convs1 = nn.ModuleList([
30
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
31
+ padding=get_padding(kernel_size, dilation[0]))),
32
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
33
+ padding=get_padding(kernel_size, dilation[1]))),
34
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
35
+ padding=get_padding(kernel_size, dilation[2])))
36
+ ])
37
+ self.convs1.apply(init_weights)
38
+
39
+ self.convs2 = nn.ModuleList([
40
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
41
+ padding=get_padding(kernel_size, 1))),
42
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
43
+ padding=get_padding(kernel_size, 1))),
44
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
45
+ padding=get_padding(kernel_size, 1)))
46
+ ])
47
+ self.convs2.apply(init_weights)
48
+
49
+ self.adain1 = nn.ModuleList([
50
+ AdaIN1d(style_dim, channels),
51
+ AdaIN1d(style_dim, channels),
52
+ AdaIN1d(style_dim, channels),
53
+ ])
54
+
55
+ self.adain2 = nn.ModuleList([
56
+ AdaIN1d(style_dim, channels),
57
+ AdaIN1d(style_dim, channels),
58
+ AdaIN1d(style_dim, channels),
59
+ ])
60
+
61
+ self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
62
+ self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
63
+
64
+
65
+ def forward(self, x, s):
66
+ for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
67
+ xt = n1(x, s)
68
+ xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
69
+ xt = c1(xt)
70
+ xt = n2(xt, s)
71
+ xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
72
+ xt = c2(xt)
73
+ x = xt + x
74
+ return x
75
+
76
+ def remove_weight_norm(self):
77
+ for l in self.convs1:
78
+ remove_weight_norm(l)
79
+ for l in self.convs2:
80
+ remove_weight_norm(l)
81
+
82
+ class SineGen(torch.nn.Module):
83
+ """ Definition of sine generator
84
+ SineGen(samp_rate, harmonic_num = 0,
85
+ sine_amp = 0.1, noise_std = 0.003,
86
+ voiced_threshold = 0,
87
+ flag_for_pulse=False)
88
+ samp_rate: sampling rate in Hz
89
+ harmonic_num: number of harmonic overtones (default 0)
90
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
91
+ noise_std: std of Gaussian noise (default 0.003)
92
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
93
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
94
+ Note: when flag_for_pulse is True, the first time step of a voiced
95
+ segment is always sin(np.pi) or cos(0)
96
+ """
97
+
98
+ def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
99
+ sine_amp=0.1, noise_std=0.003,
100
+ voiced_threshold=0,
101
+ flag_for_pulse=False):
102
+ super(SineGen, self).__init__()
103
+ self.sine_amp = sine_amp
104
+ self.noise_std = noise_std
105
+ self.harmonic_num = harmonic_num
106
+ self.dim = self.harmonic_num + 1
107
+ self.sampling_rate = samp_rate
108
+ self.voiced_threshold = voiced_threshold
109
+ self.flag_for_pulse = flag_for_pulse
110
+ self.upsample_scale = upsample_scale
111
+
112
+ def _f02uv(self, f0):
113
+ # generate uv signal
114
+ uv = (f0 > self.voiced_threshold).type(torch.float32)
115
+ return uv
116
+
117
+ def _f02sine(self, f0_values):
118
+ """ f0_values: (batchsize, length, dim)
119
+ where dim indicates fundamental tone and overtones
120
+ """
121
+ # convert to F0 in rad. The interger part n can be ignored
122
+ # because 2 * np.pi * n doesn't affect phase
123
+ rad_values = (f0_values / self.sampling_rate) % 1
124
+
125
+ # initial phase noise (no noise for fundamental component)
126
+ rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
127
+ device=f0_values.device)
128
+ rand_ini[:, 0] = 0
129
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
130
+
131
+ # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
132
+ if not self.flag_for_pulse:
133
+ # # for normal case
134
+
135
+ # # To prevent torch.cumsum numerical overflow,
136
+ # # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
137
+ # # Buffer tmp_over_one_idx indicates the time step to add -1.
138
+ # # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
139
+ # tmp_over_one = torch.cumsum(rad_values, 1) % 1
140
+ # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
141
+ # cumsum_shift = torch.zeros_like(rad_values)
142
+ # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
143
+
144
+ # phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
145
+ rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
146
+ scale_factor=1/self.upsample_scale,
147
+ mode="linear").transpose(1, 2)
148
+
149
+ # tmp_over_one = torch.cumsum(rad_values, 1) % 1
150
+ # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
151
+ # cumsum_shift = torch.zeros_like(rad_values)
152
+ # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
153
+
154
+ phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
155
+ phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
156
+ scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
157
+ sines = torch.sin(phase)
158
+
159
+ else:
160
+ # If necessary, make sure that the first time step of every
161
+ # voiced segments is sin(pi) or cos(0)
162
+ # This is used for pulse-train generation
163
+
164
+ # identify the last time step in unvoiced segments
165
+ uv = self._f02uv(f0_values)
166
+ uv_1 = torch.roll(uv, shifts=-1, dims=1)
167
+ uv_1[:, -1, :] = 1
168
+ u_loc = (uv < 1) * (uv_1 > 0)
169
+
170
+ # get the instantanouse phase
171
+ tmp_cumsum = torch.cumsum(rad_values, dim=1)
172
+ # different batch needs to be processed differently
173
+ for idx in range(f0_values.shape[0]):
174
+ temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
175
+ temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
176
+ # stores the accumulation of i.phase within
177
+ # each voiced segments
178
+ tmp_cumsum[idx, :, :] = 0
179
+ tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
180
+
181
+ # rad_values - tmp_cumsum: remove the accumulation of i.phase
182
+ # within the previous voiced segment.
183
+ i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
184
+
185
+ # get the sines
186
+ sines = torch.cos(i_phase * 2 * np.pi)
187
+ return sines
188
+
189
+ def forward(self, f0):
190
+ """ sine_tensor, uv = forward(f0)
191
+ input F0: tensor(batchsize=1, length, dim=1)
192
+ f0 for unvoiced steps should be 0
193
+ output sine_tensor: tensor(batchsize=1, length, dim)
194
+ output uv: tensor(batchsize=1, length, 1)
195
+ """
196
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
197
+ device=f0.device)
198
+ # fundamental component
199
+ fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
200
+
201
+ # generate sine waveforms
202
+ sine_waves = self._f02sine(fn) * self.sine_amp
203
+
204
+ # generate uv signal
205
+ # uv = torch.ones(f0.shape)
206
+ # uv = uv * (f0 > self.voiced_threshold)
207
+ uv = self._f02uv(f0)
208
+
209
+ # noise: for unvoiced should be similar to sine_amp
210
+ # std = self.sine_amp/3 -> max value ~ self.sine_amp
211
+ # . for voiced regions is self.noise_std
212
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
213
+ noise = noise_amp * torch.randn_like(sine_waves)
214
+
215
+ # first: set the unvoiced part to 0 by uv
216
+ # then: additive noise
217
+ sine_waves = sine_waves * uv + noise
218
+ return sine_waves, uv, noise
219
+
220
+
221
+ class SourceModuleHnNSF(torch.nn.Module):
222
+ """ SourceModule for hn-nsf
223
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
224
+ add_noise_std=0.003, voiced_threshod=0)
225
+ sampling_rate: sampling_rate in Hz
226
+ harmonic_num: number of harmonic above F0 (default: 0)
227
+ sine_amp: amplitude of sine source signal (default: 0.1)
228
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
229
+ note that amplitude of noise in unvoiced is decided
230
+ by sine_amp
231
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
232
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
233
+ F0_sampled (batchsize, length, 1)
234
+ Sine_source (batchsize, length, 1)
235
+ noise_source (batchsize, length 1)
236
+ uv (batchsize, length, 1)
237
+ """
238
+
239
+ def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
240
+ add_noise_std=0.003, voiced_threshod=0):
241
+ super(SourceModuleHnNSF, self).__init__()
242
+
243
+ self.sine_amp = sine_amp
244
+ self.noise_std = add_noise_std
245
+
246
+ # to produce sine waveforms
247
+ self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
248
+ sine_amp, add_noise_std, voiced_threshod)
249
+
250
+ # to merge source harmonics into a single excitation
251
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
252
+ self.l_tanh = torch.nn.Tanh()
253
+
254
+ def forward(self, x):
255
+ """
256
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
257
+ F0_sampled (batchsize, length, 1)
258
+ Sine_source (batchsize, length, 1)
259
+ noise_source (batchsize, length 1)
260
+ """
261
+ # source for harmonic branch
262
+ with torch.no_grad():
263
+ sine_wavs, uv, _ = self.l_sin_gen(x)
264
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
265
+
266
+ # source for noise branch, in the same shape as uv
267
+ noise = torch.randn_like(uv) * self.sine_amp / 3
268
+ return sine_merge, noise, uv
269
+ def padDiff(x):
270
+ return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
271
+
272
+ class Generator(torch.nn.Module):
273
+ def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes):
274
+ super(Generator, self).__init__()
275
+ self.num_kernels = len(resblock_kernel_sizes)
276
+ self.num_upsamples = len(upsample_rates)
277
+ resblock = AdaINResBlock1
278
+
279
+ self.m_source = SourceModuleHnNSF(
280
+ sampling_rate=24000,
281
+ upsample_scale=np.prod(upsample_rates),
282
+ harmonic_num=8, voiced_threshod=10)
283
+
284
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
285
+ self.noise_convs = nn.ModuleList()
286
+ self.ups = nn.ModuleList()
287
+ self.noise_res = nn.ModuleList()
288
+
289
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
290
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
291
+
292
+ self.ups.append(weight_norm(ConvTranspose1d(upsample_initial_channel//(2**i),
293
+ upsample_initial_channel//(2**(i+1)),
294
+ k, u, padding=(u//2 + u%2), output_padding=u%2)))
295
+
296
+ if i + 1 < len(upsample_rates): #
297
+ stride_f0 = np.prod(upsample_rates[i + 1:])
298
+ self.noise_convs.append(Conv1d(
299
+ 1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
300
+ self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
301
+ else:
302
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
303
+ self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
304
+
305
+ self.resblocks = nn.ModuleList()
306
+
307
+ self.alphas = nn.ParameterList()
308
+ self.alphas.append(nn.Parameter(torch.ones(1, upsample_initial_channel, 1)))
309
+
310
+ for i in range(len(self.ups)):
311
+ ch = upsample_initial_channel//(2**(i+1))
312
+ self.alphas.append(nn.Parameter(torch.ones(1, ch, 1)))
313
+
314
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
315
+ self.resblocks.append(resblock(ch, k, d, style_dim))
316
+
317
+ self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
318
+ self.ups.apply(init_weights)
319
+ self.conv_post.apply(init_weights)
320
+
321
+ def forward(self, x, s, f0):
322
+
323
+ f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
324
+
325
+ har_source, noi_source, uv = self.m_source(f0)
326
+ har_source = har_source.transpose(1, 2)
327
+
328
+ for i in range(self.num_upsamples):
329
+ x = x + (1 / self.alphas[i]) * (torch.sin(self.alphas[i] * x) ** 2)
330
+ x_source = self.noise_convs[i](har_source)
331
+ x_source = self.noise_res[i](x_source, s)
332
+
333
+ x = self.ups[i](x)
334
+ x = x + x_source
335
+
336
+ xs = None
337
+ for j in range(self.num_kernels):
338
+ if xs is None:
339
+ xs = self.resblocks[i*self.num_kernels+j](x, s)
340
+ else:
341
+ xs += self.resblocks[i*self.num_kernels+j](x, s)
342
+ x = xs / self.num_kernels
343
+ x = x + (1 / self.alphas[i+1]) * (torch.sin(self.alphas[i+1] * x) ** 2)
344
+ x = self.conv_post(x)
345
+ x = torch.tanh(x)
346
+
347
+ return x
348
+
349
+ def remove_weight_norm(self):
350
+ print('Removing weight norm...')
351
+ for l in self.ups:
352
+ remove_weight_norm(l)
353
+ for l in self.resblocks:
354
+ l.remove_weight_norm()
355
+ remove_weight_norm(self.conv_pre)
356
+ remove_weight_norm(self.conv_post)
357
+
358
+
359
+ class AdainResBlk1d(nn.Module):
360
+ def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
361
+ upsample='none', dropout_p=0.0):
362
+ super().__init__()
363
+ self.actv = actv
364
+ self.upsample_type = upsample
365
+ self.upsample = UpSample1d(upsample)
366
+ self.learned_sc = dim_in != dim_out
367
+ self._build_weights(dim_in, dim_out, style_dim)
368
+ self.dropout = nn.Dropout(dropout_p)
369
+
370
+ if upsample == 'none':
371
+ self.pool = nn.Identity()
372
+ else:
373
+ self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
374
+
375
+
376
+ def _build_weights(self, dim_in, dim_out, style_dim):
377
+ self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
378
+ self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
379
+ self.norm1 = AdaIN1d(style_dim, dim_in)
380
+ self.norm2 = AdaIN1d(style_dim, dim_out)
381
+ if self.learned_sc:
382
+ self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
383
+
384
+ def _shortcut(self, x):
385
+ x = self.upsample(x)
386
+ if self.learned_sc:
387
+ x = self.conv1x1(x)
388
+ return x
389
+
390
+ def _residual(self, x, s):
391
+ x = self.norm1(x, s)
392
+ x = self.actv(x)
393
+ x = self.pool(x)
394
+ x = self.conv1(self.dropout(x))
395
+ x = self.norm2(x, s)
396
+ x = self.actv(x)
397
+ x = self.conv2(self.dropout(x))
398
+ return x
399
+
400
+ def forward(self, x, s):
401
+ out = self._residual(x, s)
402
+ out = (out + self._shortcut(x)) / math.sqrt(2)
403
+ return out
404
+
405
+ class UpSample1d(nn.Module):
406
+ def __init__(self, layer_type):
407
+ super().__init__()
408
+ self.layer_type = layer_type
409
+
410
+ def forward(self, x):
411
+ if self.layer_type == 'none':
412
+ return x
413
+ else:
414
+ return F.interpolate(x, scale_factor=2, mode='nearest')
415
+
416
+ class Decoder(nn.Module):
417
+ def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
418
+ resblock_kernel_sizes = [3,7,11],
419
+ upsample_rates = [10,5,3,2],
420
+ upsample_initial_channel=512,
421
+ resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
422
+ upsample_kernel_sizes=[20,10,6,4]):
423
+ super().__init__()
424
+
425
+ self.decode = nn.ModuleList()
426
+
427
+ self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
428
+
429
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
430
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
431
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
432
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
433
+
434
+ self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
435
+
436
+ self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
437
+
438
+ self.asr_res = nn.Sequential(
439
+ weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
440
+ )
441
+
442
+
443
+ self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes)
444
+
445
+
446
+ def forward(self, asr, F0_curve, N, s):
447
+ if self.training:
448
+ downlist = [0, 3, 7]
449
+ F0_down = downlist[random.randint(0, 2)]
450
+ downlist = [0, 3, 7, 15]
451
+ N_down = downlist[random.randint(0, 3)]
452
+ if F0_down:
453
+ F0_curve = nn.functional.conv1d(F0_curve.unsqueeze(1), torch.ones(1, 1, F0_down).to('cuda'), padding=F0_down//2).squeeze(1) / F0_down
454
+ if N_down:
455
+ N = nn.functional.conv1d(N.unsqueeze(1), torch.ones(1, 1, N_down).to('cuda'), padding=N_down//2).squeeze(1) / N_down
456
+
457
+
458
+ F0 = self.F0_conv(F0_curve.unsqueeze(1))
459
+ N = self.N_conv(N.unsqueeze(1))
460
+
461
+ x = torch.cat([asr, F0, N], axis=1)
462
+ x = self.encode(x, s)
463
+
464
+ asr_res = self.asr_res(asr)
465
+
466
+ res = True
467
+ for block in self.decode:
468
+ if res:
469
+ x = torch.cat([x, asr_res, F0, N], axis=1)
470
+ x = block(x, s)
471
+ if block.upsample_type != "none":
472
+ res = False
473
+
474
+ x = self.generator(x, s, F0_curve)
475
+ return x
476
+
477
+
styletts2/Modules/istftnet.py ADDED
@@ -0,0 +1,530 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import torch.nn as nn
4
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
5
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
6
+ from .utils import init_weights, get_padding
7
+
8
+ import math
9
+ import random
10
+ import numpy as np
11
+ from scipy.signal import get_window
12
+
13
+ LRELU_SLOPE = 0.1
14
+
15
+ class AdaIN1d(nn.Module):
16
+ def __init__(self, style_dim, num_features):
17
+ super().__init__()
18
+ self.norm = nn.InstanceNorm1d(num_features, affine=False)
19
+ self.fc = nn.Linear(style_dim, num_features*2)
20
+
21
+ def forward(self, x, s):
22
+ h = self.fc(s)
23
+ h = h.view(h.size(0), h.size(1), 1)
24
+ gamma, beta = torch.chunk(h, chunks=2, dim=1)
25
+ return (1 + gamma) * self.norm(x) + beta
26
+
27
+ class AdaINResBlock1(torch.nn.Module):
28
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
29
+ super(AdaINResBlock1, self).__init__()
30
+ self.convs1 = nn.ModuleList([
31
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
32
+ padding=get_padding(kernel_size, dilation[0]))),
33
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
34
+ padding=get_padding(kernel_size, dilation[1]))),
35
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
36
+ padding=get_padding(kernel_size, dilation[2])))
37
+ ])
38
+ self.convs1.apply(init_weights)
39
+
40
+ self.convs2 = nn.ModuleList([
41
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
42
+ padding=get_padding(kernel_size, 1))),
43
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
44
+ padding=get_padding(kernel_size, 1))),
45
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
46
+ padding=get_padding(kernel_size, 1)))
47
+ ])
48
+ self.convs2.apply(init_weights)
49
+
50
+ self.adain1 = nn.ModuleList([
51
+ AdaIN1d(style_dim, channels),
52
+ AdaIN1d(style_dim, channels),
53
+ AdaIN1d(style_dim, channels),
54
+ ])
55
+
56
+ self.adain2 = nn.ModuleList([
57
+ AdaIN1d(style_dim, channels),
58
+ AdaIN1d(style_dim, channels),
59
+ AdaIN1d(style_dim, channels),
60
+ ])
61
+
62
+ self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
63
+ self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
64
+
65
+
66
+ def forward(self, x, s):
67
+ for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
68
+ xt = n1(x, s)
69
+ xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
70
+ xt = c1(xt)
71
+ xt = n2(xt, s)
72
+ xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
73
+ xt = c2(xt)
74
+ x = xt + x
75
+ return x
76
+
77
+ def remove_weight_norm(self):
78
+ for l in self.convs1:
79
+ remove_weight_norm(l)
80
+ for l in self.convs2:
81
+ remove_weight_norm(l)
82
+
83
+ class TorchSTFT(torch.nn.Module):
84
+ def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'):
85
+ super().__init__()
86
+ self.filter_length = filter_length
87
+ self.hop_length = hop_length
88
+ self.win_length = win_length
89
+ self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32))
90
+
91
+ def transform(self, input_data):
92
+ forward_transform = torch.stft(
93
+ input_data,
94
+ self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device),
95
+ return_complex=True)
96
+
97
+ return torch.abs(forward_transform), torch.angle(forward_transform)
98
+
99
+ def inverse(self, magnitude, phase):
100
+ inverse_transform = torch.istft(
101
+ magnitude * torch.exp(phase * 1j),
102
+ self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device))
103
+
104
+ return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation
105
+
106
+ def forward(self, input_data):
107
+ self.magnitude, self.phase = self.transform(input_data)
108
+ reconstruction = self.inverse(self.magnitude, self.phase)
109
+ return reconstruction
110
+
111
+ class SineGen(torch.nn.Module):
112
+ """ Definition of sine generator
113
+ SineGen(samp_rate, harmonic_num = 0,
114
+ sine_amp = 0.1, noise_std = 0.003,
115
+ voiced_threshold = 0,
116
+ flag_for_pulse=False)
117
+ samp_rate: sampling rate in Hz
118
+ harmonic_num: number of harmonic overtones (default 0)
119
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
120
+ noise_std: std of Gaussian noise (default 0.003)
121
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
122
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
123
+ Note: when flag_for_pulse is True, the first time step of a voiced
124
+ segment is always sin(np.pi) or cos(0)
125
+ """
126
+
127
+ def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
128
+ sine_amp=0.1, noise_std=0.003,
129
+ voiced_threshold=0,
130
+ flag_for_pulse=False):
131
+ super(SineGen, self).__init__()
132
+ self.sine_amp = sine_amp
133
+ self.noise_std = noise_std
134
+ self.harmonic_num = harmonic_num
135
+ self.dim = self.harmonic_num + 1
136
+ self.sampling_rate = samp_rate
137
+ self.voiced_threshold = voiced_threshold
138
+ self.flag_for_pulse = flag_for_pulse
139
+ self.upsample_scale = upsample_scale
140
+
141
+ def _f02uv(self, f0):
142
+ # generate uv signal
143
+ uv = (f0 > self.voiced_threshold).type(torch.float32)
144
+ return uv
145
+
146
+ def _f02sine(self, f0_values):
147
+ """ f0_values: (batchsize, length, dim)
148
+ where dim indicates fundamental tone and overtones
149
+ """
150
+ # convert to F0 in rad. The interger part n can be ignored
151
+ # because 2 * np.pi * n doesn't affect phase
152
+ rad_values = (f0_values / self.sampling_rate) % 1
153
+
154
+ # initial phase noise (no noise for fundamental component)
155
+ rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
156
+ device=f0_values.device)
157
+ rand_ini[:, 0] = 0
158
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
159
+
160
+ # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
161
+ if not self.flag_for_pulse:
162
+ # # for normal case
163
+
164
+ # # To prevent torch.cumsum numerical overflow,
165
+ # # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
166
+ # # Buffer tmp_over_one_idx indicates the time step to add -1.
167
+ # # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
168
+ # tmp_over_one = torch.cumsum(rad_values, 1) % 1
169
+ # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
170
+ # cumsum_shift = torch.zeros_like(rad_values)
171
+ # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
172
+
173
+ # phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
174
+ rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
175
+ scale_factor=1/self.upsample_scale,
176
+ mode="linear").transpose(1, 2)
177
+
178
+ # tmp_over_one = torch.cumsum(rad_values, 1) % 1
179
+ # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
180
+ # cumsum_shift = torch.zeros_like(rad_values)
181
+ # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
182
+
183
+ phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
184
+ phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
185
+ scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
186
+ sines = torch.sin(phase)
187
+
188
+ else:
189
+ # If necessary, make sure that the first time step of every
190
+ # voiced segments is sin(pi) or cos(0)
191
+ # This is used for pulse-train generation
192
+
193
+ # identify the last time step in unvoiced segments
194
+ uv = self._f02uv(f0_values)
195
+ uv_1 = torch.roll(uv, shifts=-1, dims=1)
196
+ uv_1[:, -1, :] = 1
197
+ u_loc = (uv < 1) * (uv_1 > 0)
198
+
199
+ # get the instantanouse phase
200
+ tmp_cumsum = torch.cumsum(rad_values, dim=1)
201
+ # different batch needs to be processed differently
202
+ for idx in range(f0_values.shape[0]):
203
+ temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
204
+ temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
205
+ # stores the accumulation of i.phase within
206
+ # each voiced segments
207
+ tmp_cumsum[idx, :, :] = 0
208
+ tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
209
+
210
+ # rad_values - tmp_cumsum: remove the accumulation of i.phase
211
+ # within the previous voiced segment.
212
+ i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
213
+
214
+ # get the sines
215
+ sines = torch.cos(i_phase * 2 * np.pi)
216
+ return sines
217
+
218
+ def forward(self, f0):
219
+ """ sine_tensor, uv = forward(f0)
220
+ input F0: tensor(batchsize=1, length, dim=1)
221
+ f0 for unvoiced steps should be 0
222
+ output sine_tensor: tensor(batchsize=1, length, dim)
223
+ output uv: tensor(batchsize=1, length, 1)
224
+ """
225
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
226
+ device=f0.device)
227
+ # fundamental component
228
+ fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
229
+
230
+ # generate sine waveforms
231
+ sine_waves = self._f02sine(fn) * self.sine_amp
232
+
233
+ # generate uv signal
234
+ # uv = torch.ones(f0.shape)
235
+ # uv = uv * (f0 > self.voiced_threshold)
236
+ uv = self._f02uv(f0)
237
+
238
+ # noise: for unvoiced should be similar to sine_amp
239
+ # std = self.sine_amp/3 -> max value ~ self.sine_amp
240
+ # . for voiced regions is self.noise_std
241
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
242
+ noise = noise_amp * torch.randn_like(sine_waves)
243
+
244
+ # first: set the unvoiced part to 0 by uv
245
+ # then: additive noise
246
+ sine_waves = sine_waves * uv + noise
247
+ return sine_waves, uv, noise
248
+
249
+
250
+ class SourceModuleHnNSF(torch.nn.Module):
251
+ """ SourceModule for hn-nsf
252
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
253
+ add_noise_std=0.003, voiced_threshod=0)
254
+ sampling_rate: sampling_rate in Hz
255
+ harmonic_num: number of harmonic above F0 (default: 0)
256
+ sine_amp: amplitude of sine source signal (default: 0.1)
257
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
258
+ note that amplitude of noise in unvoiced is decided
259
+ by sine_amp
260
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
261
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
262
+ F0_sampled (batchsize, length, 1)
263
+ Sine_source (batchsize, length, 1)
264
+ noise_source (batchsize, length 1)
265
+ uv (batchsize, length, 1)
266
+ """
267
+
268
+ def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
269
+ add_noise_std=0.003, voiced_threshod=0):
270
+ super(SourceModuleHnNSF, self).__init__()
271
+
272
+ self.sine_amp = sine_amp
273
+ self.noise_std = add_noise_std
274
+
275
+ # to produce sine waveforms
276
+ self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
277
+ sine_amp, add_noise_std, voiced_threshod)
278
+
279
+ # to merge source harmonics into a single excitation
280
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
281
+ self.l_tanh = torch.nn.Tanh()
282
+
283
+ def forward(self, x):
284
+ """
285
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
286
+ F0_sampled (batchsize, length, 1)
287
+ Sine_source (batchsize, length, 1)
288
+ noise_source (batchsize, length 1)
289
+ """
290
+ # source for harmonic branch
291
+ with torch.no_grad():
292
+ sine_wavs, uv, _ = self.l_sin_gen(x)
293
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
294
+
295
+ # source for noise branch, in the same shape as uv
296
+ noise = torch.randn_like(uv) * self.sine_amp / 3
297
+ return sine_merge, noise, uv
298
+ def padDiff(x):
299
+ return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
300
+
301
+
302
+ class Generator(torch.nn.Module):
303
+ def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size):
304
+ super(Generator, self).__init__()
305
+
306
+ self.num_kernels = len(resblock_kernel_sizes)
307
+ self.num_upsamples = len(upsample_rates)
308
+ resblock = AdaINResBlock1
309
+
310
+ self.m_source = SourceModuleHnNSF(
311
+ sampling_rate=24000,
312
+ upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size,
313
+ harmonic_num=8, voiced_threshod=10)
314
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * gen_istft_hop_size)
315
+ self.noise_convs = nn.ModuleList()
316
+ self.noise_res = nn.ModuleList()
317
+
318
+ self.ups = nn.ModuleList()
319
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
320
+ self.ups.append(weight_norm(
321
+ ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
322
+ k, u, padding=(k-u)//2)))
323
+
324
+ self.resblocks = nn.ModuleList()
325
+ for i in range(len(self.ups)):
326
+ ch = upsample_initial_channel//(2**(i+1))
327
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)):
328
+ self.resblocks.append(resblock(ch, k, d, style_dim))
329
+
330
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
331
+
332
+ if i + 1 < len(upsample_rates): #
333
+ stride_f0 = np.prod(upsample_rates[i + 1:])
334
+ self.noise_convs.append(Conv1d(
335
+ gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
336
+ self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
337
+ else:
338
+ self.noise_convs.append(Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1))
339
+ self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
340
+
341
+
342
+ self.post_n_fft = gen_istft_n_fft
343
+ self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
344
+ self.ups.apply(init_weights)
345
+ self.conv_post.apply(init_weights)
346
+ self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
347
+ self.stft = TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
348
+
349
+
350
+ def forward(self, x, s, f0):
351
+ with torch.no_grad():
352
+ f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
353
+
354
+ har_source, noi_source, uv = self.m_source(f0)
355
+ har_source = har_source.transpose(1, 2).squeeze(1)
356
+ har_spec, har_phase = self.stft.transform(har_source)
357
+ har = torch.cat([har_spec, har_phase], dim=1)
358
+
359
+ for i in range(self.num_upsamples):
360
+ x = F.leaky_relu(x, LRELU_SLOPE)
361
+ x_source = self.noise_convs[i](har)
362
+ x_source = self.noise_res[i](x_source, s)
363
+
364
+ x = self.ups[i](x)
365
+ if i == self.num_upsamples - 1:
366
+ x = self.reflection_pad(x)
367
+
368
+ x = x + x_source
369
+ xs = None
370
+ for j in range(self.num_kernels):
371
+ if xs is None:
372
+ xs = self.resblocks[i*self.num_kernels+j](x, s)
373
+ else:
374
+ xs += self.resblocks[i*self.num_kernels+j](x, s)
375
+ x = xs / self.num_kernels
376
+ x = F.leaky_relu(x)
377
+ x = self.conv_post(x)
378
+ spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
379
+ phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
380
+ return self.stft.inverse(spec, phase)
381
+
382
+ def fw_phase(self, x, s):
383
+ for i in range(self.num_upsamples):
384
+ x = F.leaky_relu(x, LRELU_SLOPE)
385
+ x = self.ups[i](x)
386
+ xs = None
387
+ for j in range(self.num_kernels):
388
+ if xs is None:
389
+ xs = self.resblocks[i*self.num_kernels+j](x, s)
390
+ else:
391
+ xs += self.resblocks[i*self.num_kernels+j](x, s)
392
+ x = xs / self.num_kernels
393
+ x = F.leaky_relu(x)
394
+ x = self.reflection_pad(x)
395
+ x = self.conv_post(x)
396
+ spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
397
+ phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
398
+ return spec, phase
399
+
400
+ def remove_weight_norm(self):
401
+ print('Removing weight norm...')
402
+ for l in self.ups:
403
+ remove_weight_norm(l)
404
+ for l in self.resblocks:
405
+ l.remove_weight_norm()
406
+ remove_weight_norm(self.conv_pre)
407
+ remove_weight_norm(self.conv_post)
408
+
409
+
410
+ class AdainResBlk1d(nn.Module):
411
+ def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
412
+ upsample='none', dropout_p=0.0):
413
+ super().__init__()
414
+ self.actv = actv
415
+ self.upsample_type = upsample
416
+ self.upsample = UpSample1d(upsample)
417
+ self.learned_sc = dim_in != dim_out
418
+ self._build_weights(dim_in, dim_out, style_dim)
419
+ self.dropout = nn.Dropout(dropout_p)
420
+
421
+ if upsample == 'none':
422
+ self.pool = nn.Identity()
423
+ else:
424
+ self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
425
+
426
+
427
+ def _build_weights(self, dim_in, dim_out, style_dim):
428
+ self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
429
+ self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
430
+ self.norm1 = AdaIN1d(style_dim, dim_in)
431
+ self.norm2 = AdaIN1d(style_dim, dim_out)
432
+ if self.learned_sc:
433
+ self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
434
+
435
+ def _shortcut(self, x):
436
+ x = self.upsample(x)
437
+ if self.learned_sc:
438
+ x = self.conv1x1(x)
439
+ return x
440
+
441
+ def _residual(self, x, s):
442
+ x = self.norm1(x, s)
443
+ x = self.actv(x)
444
+ x = self.pool(x)
445
+ x = self.conv1(self.dropout(x))
446
+ x = self.norm2(x, s)
447
+ x = self.actv(x)
448
+ x = self.conv2(self.dropout(x))
449
+ return x
450
+
451
+ def forward(self, x, s):
452
+ out = self._residual(x, s)
453
+ out = (out + self._shortcut(x)) / math.sqrt(2)
454
+ return out
455
+
456
+ class UpSample1d(nn.Module):
457
+ def __init__(self, layer_type):
458
+ super().__init__()
459
+ self.layer_type = layer_type
460
+
461
+ def forward(self, x):
462
+ if self.layer_type == 'none':
463
+ return x
464
+ else:
465
+ return F.interpolate(x, scale_factor=2, mode='nearest')
466
+
467
+ class Decoder(nn.Module):
468
+ def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
469
+ resblock_kernel_sizes = [3,7,11],
470
+ upsample_rates = [10, 6],
471
+ upsample_initial_channel=512,
472
+ resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
473
+ upsample_kernel_sizes=[20, 12],
474
+ gen_istft_n_fft=20, gen_istft_hop_size=5):
475
+ super().__init__()
476
+
477
+ self.decode = nn.ModuleList()
478
+
479
+ self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
480
+
481
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
482
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
483
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
484
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
485
+
486
+ self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
487
+
488
+ self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
489
+
490
+ self.asr_res = nn.Sequential(
491
+ weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
492
+ )
493
+
494
+
495
+ self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates,
496
+ upsample_initial_channel, resblock_dilation_sizes,
497
+ upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size)
498
+
499
+ def forward(self, asr, F0_curve, N, s):
500
+ if self.training:
501
+ downlist = [0, 3, 7]
502
+ F0_down = downlist[random.randint(0, 2)]
503
+ downlist = [0, 3, 7, 15]
504
+ N_down = downlist[random.randint(0, 3)]
505
+ if F0_down:
506
+ F0_curve = nn.functional.conv1d(F0_curve.unsqueeze(1), torch.ones(1, 1, F0_down).to('cuda'), padding=F0_down//2).squeeze(1) / F0_down
507
+ if N_down:
508
+ N = nn.functional.conv1d(N.unsqueeze(1), torch.ones(1, 1, N_down).to('cuda'), padding=N_down//2).squeeze(1) / N_down
509
+
510
+
511
+ F0 = self.F0_conv(F0_curve.unsqueeze(1))
512
+ N = self.N_conv(N.unsqueeze(1))
513
+
514
+ x = torch.cat([asr, F0, N], axis=1)
515
+ x = self.encode(x, s)
516
+
517
+ asr_res = self.asr_res(asr)
518
+
519
+ res = True
520
+ for block in self.decode:
521
+ if res:
522
+ x = torch.cat([x, asr_res, F0, N], axis=1)
523
+ x = block(x, s)
524
+ if block.upsample_type != "none":
525
+ res = False
526
+
527
+ x = self.generator(x, s, F0_curve)
528
+ return x
529
+
530
+
styletts2/Modules/slmadv.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ import torch.nn.functional as F
4
+
5
+ class SLMAdversarialLoss(torch.nn.Module):
6
+
7
+ def __init__(self, model, wl, sampler, min_len, max_len, batch_percentage=0.5, skip_update=10, sig=1.5):
8
+ super(SLMAdversarialLoss, self).__init__()
9
+ self.model = model
10
+ self.wl = wl
11
+ self.sampler = sampler
12
+
13
+ self.min_len = min_len
14
+ self.max_len = max_len
15
+ self.batch_percentage = batch_percentage
16
+
17
+ self.sig = sig
18
+ self.skip_update = skip_update
19
+
20
+ def forward(self, iters, y_rec_gt, y_rec_gt_pred, waves, mel_input_length, ref_text, ref_lengths, use_ind, s_trg, ref_s=None):
21
+ text_mask = length_to_mask(ref_lengths).to(ref_text.device)
22
+ bert_dur = self.model.bert(ref_text, attention_mask=(~text_mask).int())
23
+ d_en = self.model.bert_encoder(bert_dur).transpose(-1, -2)
24
+
25
+ if use_ind and np.random.rand() < 0.5:
26
+ s_preds = s_trg
27
+ else:
28
+ num_steps = np.random.randint(3, 5)
29
+ if ref_s is not None:
30
+ s_preds = self.sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(ref_text.device),
31
+ embedding=bert_dur,
32
+ embedding_scale=1,
33
+ features=ref_s, # reference from the same speaker as the embedding
34
+ embedding_mask_proba=0.1,
35
+ num_steps=num_steps).squeeze(1)
36
+ else:
37
+ s_preds = self.sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(ref_text.device),
38
+ embedding=bert_dur,
39
+ embedding_scale=1,
40
+ embedding_mask_proba=0.1,
41
+ num_steps=num_steps).squeeze(1)
42
+
43
+ s_dur = s_preds[:, 128:]
44
+ s = s_preds[:, :128]
45
+
46
+ d, _ = self.model.predictor(d_en, s_dur,
47
+ ref_lengths,
48
+ torch.randn(ref_lengths.shape[0], ref_lengths.max(), 2).to(ref_text.device),
49
+ text_mask)
50
+
51
+ bib = 0
52
+
53
+ output_lengths = []
54
+ attn_preds = []
55
+
56
+ # differentiable duration modeling
57
+ for _s2s_pred, _text_length in zip(d, ref_lengths):
58
+
59
+ _s2s_pred_org = _s2s_pred[:_text_length, :]
60
+
61
+ _s2s_pred = torch.sigmoid(_s2s_pred_org)
62
+ _dur_pred = _s2s_pred.sum(axis=-1)
63
+
64
+ l = int(torch.round(_s2s_pred.sum()).item())
65
+ t = torch.arange(0, l).expand(l)
66
+
67
+ t = torch.arange(0, l).unsqueeze(0).expand((len(_s2s_pred), l)).to(ref_text.device)
68
+ loc = torch.cumsum(_dur_pred, dim=0) - _dur_pred / 2
69
+
70
+ h = torch.exp(-0.5 * torch.square(t - (l - loc.unsqueeze(-1))) / (self.sig)**2)
71
+
72
+ out = torch.nn.functional.conv1d(_s2s_pred_org.unsqueeze(0),
73
+ h.unsqueeze(1),
74
+ padding=h.shape[-1] - 1, groups=int(_text_length))[..., :l]
75
+ attn_preds.append(F.softmax(out.squeeze(), dim=0))
76
+
77
+ output_lengths.append(l)
78
+
79
+ max_len = max(output_lengths)
80
+
81
+ with torch.no_grad():
82
+ t_en = self.model.text_encoder(ref_text, ref_lengths, text_mask)
83
+
84
+ s2s_attn = torch.zeros(len(ref_lengths), int(ref_lengths.max()), max_len).to(ref_text.device)
85
+ for bib in range(len(output_lengths)):
86
+ s2s_attn[bib, :ref_lengths[bib], :output_lengths[bib]] = attn_preds[bib]
87
+
88
+ asr_pred = t_en @ s2s_attn
89
+
90
+ _, p_pred = self.model.predictor(d_en, s_dur,
91
+ ref_lengths,
92
+ s2s_attn,
93
+ text_mask)
94
+
95
+ mel_len = max(int(min(output_lengths) / 2 - 1), self.min_len // 2)
96
+ mel_len = min(mel_len, self.max_len // 2)
97
+
98
+ # get clips
99
+
100
+ en = []
101
+ p_en = []
102
+ sp = []
103
+
104
+ F0_fakes = []
105
+ N_fakes = []
106
+
107
+ wav = []
108
+
109
+ for bib in range(len(output_lengths)):
110
+ mel_length_pred = output_lengths[bib]
111
+ mel_length_gt = int(mel_input_length[bib].item() / 2)
112
+ if mel_length_gt <= mel_len or mel_length_pred <= mel_len:
113
+ continue
114
+
115
+ sp.append(s_preds[bib])
116
+
117
+ random_start = np.random.randint(0, mel_length_pred - mel_len)
118
+ en.append(asr_pred[bib, :, random_start:random_start+mel_len])
119
+ p_en.append(p_pred[bib, :, random_start:random_start+mel_len])
120
+
121
+ # get ground truth clips
122
+ random_start = np.random.randint(0, mel_length_gt - mel_len)
123
+ y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300]
124
+ wav.append(torch.from_numpy(y).to(ref_text.device))
125
+
126
+ if len(wav) >= self.batch_percentage * len(waves): # prevent OOM due to longer lengths
127
+ break
128
+
129
+ if len(sp) <= 1:
130
+ return None
131
+
132
+ sp = torch.stack(sp)
133
+ wav = torch.stack(wav).float()
134
+ en = torch.stack(en)
135
+ p_en = torch.stack(p_en)
136
+
137
+ F0_fake, N_fake = self.model.predictor.F0Ntrain(p_en, sp[:, 128:])
138
+ y_pred = self.model.decoder(en, F0_fake, N_fake, sp[:, :128])
139
+
140
+ # discriminator loss
141
+ if (iters + 1) % self.skip_update == 0:
142
+ if np.random.randint(0, 2) == 0:
143
+ wav = y_rec_gt_pred
144
+ use_rec = True
145
+ else:
146
+ use_rec = False
147
+
148
+ crop_size = min(wav.size(-1), y_pred.size(-1))
149
+ if use_rec: # use reconstructed (shorter lengths), do length invariant regularization
150
+ if wav.size(-1) > y_pred.size(-1):
151
+ real_GP = wav[:, : , :crop_size]
152
+ out_crop = self.wl.discriminator_forward(real_GP.detach().squeeze())
153
+ out_org = self.wl.discriminator_forward(wav.detach().squeeze())
154
+ loss_reg = F.l1_loss(out_crop, out_org[..., :out_crop.size(-1)])
155
+
156
+ if np.random.randint(0, 2) == 0:
157
+ d_loss = self.wl.discriminator(real_GP.detach().squeeze(), y_pred.detach().squeeze()).mean()
158
+ else:
159
+ d_loss = self.wl.discriminator(wav.detach().squeeze(), y_pred.detach().squeeze()).mean()
160
+ else:
161
+ real_GP = y_pred[:, : , :crop_size]
162
+ out_crop = self.wl.discriminator_forward(real_GP.detach().squeeze())
163
+ out_org = self.wl.discriminator_forward(y_pred.detach().squeeze())
164
+ loss_reg = F.l1_loss(out_crop, out_org[..., :out_crop.size(-1)])
165
+
166
+ if np.random.randint(0, 2) == 0:
167
+ d_loss = self.wl.discriminator(wav.detach().squeeze(), real_GP.detach().squeeze()).mean()
168
+ else:
169
+ d_loss = self.wl.discriminator(wav.detach().squeeze(), y_pred.detach().squeeze()).mean()
170
+
171
+ # regularization (ignore length variation)
172
+ d_loss += loss_reg
173
+
174
+ out_gt = self.wl.discriminator_forward(y_rec_gt.detach().squeeze())
175
+ out_rec = self.wl.discriminator_forward(y_rec_gt_pred.detach().squeeze())
176
+
177
+ # regularization (ignore reconstruction artifacts)
178
+ d_loss += F.l1_loss(out_gt, out_rec)
179
+
180
+ else:
181
+ d_loss = self.wl.discriminator(wav.detach().squeeze(), y_pred.detach().squeeze()).mean()
182
+ else:
183
+ d_loss = 0
184
+
185
+ # generator loss
186
+ gen_loss = self.wl.generator(y_pred.squeeze())
187
+
188
+ gen_loss = gen_loss.mean()
189
+
190
+ return d_loss, gen_loss, y_pred.detach().cpu().numpy()
191
+
192
+ def length_to_mask(lengths):
193
+ mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
194
+ mask = torch.gt(mask+1, lengths.unsqueeze(1))
195
+ return mask
styletts2/Modules/utils.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def init_weights(m, mean=0.0, std=0.01):
2
+ classname = m.__class__.__name__
3
+ if classname.find("Conv") != -1:
4
+ m.weight.data.normal_(mean, std)
5
+
6
+
7
+ def apply_weight_norm(m):
8
+ classname = m.__class__.__name__
9
+ if classname.find("Conv") != -1:
10
+ weight_norm(m)
11
+
12
+
13
+ def get_padding(kernel_size, dilation=1):
14
+ return int((kernel_size*dilation - dilation)/2)
styletts2/README.md ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # StyleTTS 2: Towards Human-Level Text-to-Speech through Style Diffusion and Adversarial Training with Large Speech Language Models
2
+
3
+ ### Yinghao Aaron Li, Cong Han, Vinay S. Raghavan, Gavin Mischler, Nima Mesgarani
4
+
5
+ > In this paper, we present StyleTTS 2, a text-to-speech (TTS) model that leverages style diffusion and adversarial training with large speech language models (SLMs) to achieve human-level TTS synthesis. StyleTTS 2 differs from its predecessor by modeling styles as a latent random variable through diffusion models to generate the most suitable style for the text without requiring reference speech, achieving efficient latent diffusion while benefiting from the diverse speech synthesis offered by diffusion models. Furthermore, we employ large pre-trained SLMs, such as WavLM, as discriminators with our novel differentiable duration modeling for end-to-end training, resulting in improved speech naturalness. StyleTTS 2 surpasses human recordings on the single-speaker LJSpeech dataset and matches it on the multispeaker VCTK dataset as judged by native English speakers. Moreover, when trained on the LibriTTS dataset, our model outperforms previous publicly available models for zero-shot speaker adaptation. This work achieves the first human-level TTS synthesis on both single and multispeaker datasets, showcasing the potential of style diffusion and adversarial training with large SLMs.
6
+
7
+ Paper: [https://arxiv.org/abs/2306.07691](https://arxiv.org/abs/2306.07691)
8
+
9
+ Audio samples: [https://styletts2.github.io/](https://styletts2.github.io/)
10
+
11
+ Online demo: [Hugging Face](https://huggingface.co/spaces/styletts2/styletts2) (thank [@fakerybakery](https://github.com/fakerybakery) for the wonderful online demo)
12
+
13
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/yl4579/StyleTTS2/blob/main/) [![Slack](https://img.shields.io/badge/Join%20Our%20Community-Slack-blue)](https://join.slack.com/t/styletts2/shared_invite/zt-2805io6cg-0ROMhjfW9Gd_ix_FJqjGmQ)
14
+
15
+ ## TODO
16
+ - [x] Training and inference demo code for single-speaker models (LJSpeech)
17
+ - [x] Test training code for multi-speaker models (VCTK and LibriTTS)
18
+ - [x] Finish demo code for multispeaker model and upload pre-trained models
19
+ - [x] Add a finetuning script for new speakers with base pre-trained multispeaker models
20
+ - [ ] Fix DDP (accelerator) for `train_second.py` **(I have tried everything I could to fix this but had no success, so if you are willing to help, please see [#7](https://github.com/yl4579/StyleTTS2/issues/7))**
21
+
22
+ ## Pre-requisites
23
+ 1. Python >= 3.7
24
+ 2. Clone this repository:
25
+ ```bash
26
+ git clone https://github.com/yl4579/StyleTTS2.git
27
+ cd StyleTTS2
28
+ ```
29
+ 3. Install python requirements:
30
+ ```bash
31
+ pip install -r requirements.txt
32
+ ```
33
+ On Windows add:
34
+ ```bash
35
+ pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 -U
36
+ ```
37
+ Also install phonemizer and espeak if you want to run the demo:
38
+ ```bash
39
+ pip install phonemizer
40
+ sudo apt-get install espeak-ng
41
+ ```
42
+ 4. Download and extract the [LJSpeech dataset](https://keithito.com/LJ-Speech-Dataset/), unzip to the data folder and upsample the data to 24 kHz. The text aligner and pitch extractor are pre-trained on 24 kHz data, but you can easily change the preprocessing and re-train them using your own preprocessing.
43
+ For LibriTTS, you will need to combine train-clean-360 with train-clean-100 and rename the folder train-clean-460 (see [val_list_libritts.txt](https://github.com/yl4579/StyleTTS/blob/main/Data/val_list_libritts.txt) as an example).
44
+
45
+ ## Training
46
+ First stage training:
47
+ ```bash
48
+ accelerate launch train_first.py --config_path ./Configs/config.yml
49
+ ```
50
+ Second stage training **(DDP version not working, so the current version uses DP, again see [#7](https://github.com/yl4579/StyleTTS2/issues/7) if you want to help)**:
51
+ ```bash
52
+ python train_second.py --config_path ./Configs/config.yml
53
+ ```
54
+ You can run both consecutively and it will train both the first and second stages. The model will be saved in the format "epoch_1st_%05d.pth" and "epoch_2nd_%05d.pth". Checkpoints and Tensorboard logs will be saved at `log_dir`.
55
+
56
+ The data list format needs to be `filename.wav|transcription|speaker`, see [val_list.txt](https://github.com/yl4579/StyleTTS2/blob/main/Data/val_list.txt) as an example. The speaker labels are needed for multi-speaker models because we need to sample reference audio for style diffusion model training.
57
+
58
+ ### Important Configurations
59
+ In [config.yml](https://github.com/yl4579/StyleTTS2/blob/main/Configs/config.yml), there are a few important configurations to take care of:
60
+ - `OOD_data`: The path for out-of-distribution texts for SLM adversarial training. The format should be `text|anything`.
61
+ - `min_length`: Minimum length of OOD texts for training. This is to make sure the synthesized speech has a minimum length.
62
+ - `max_len`: Maximum length of audio for training. The unit is frame. Since the default hop size is 300, one frame is approximately `300 / 24000` (0.0125) second. Lowering this if you encounter the out-of-memory issue.
63
+ - `multispeaker`: Set to true if you want to train a multispeaker model. This is needed because the architecture of the denoiser is different for single and multispeaker models.
64
+ - `batch_percentage`: This is to make sure during SLM adversarial training there are no out-of-memory (OOM) issues. If you encounter OOM problem, please set a lower number for this.
65
+
66
+ ### Pre-trained modules
67
+ In [Utils](https://github.com/yl4579/StyleTTS2/tree/main/Utils) folder, there are three pre-trained models:
68
+ - **[ASR](https://github.com/yl4579/StyleTTS2/tree/main/Utils/ASR) folder**: It contains the pre-trained text aligner, which was pre-trained on English (LibriTTS), Japanese (JVS), and Chinese (AiShell) corpus. It works well for most other languages without fine-tuning, but you can always train your own text aligner with the code here: [yl4579/AuxiliaryASR](https://github.com/yl4579/AuxiliaryASR).
69
+ - **[JDC](https://github.com/yl4579/StyleTTS2/tree/main/Utils/JDC) folder**: It contains the pre-trained pitch extractor, which was pre-trained on English (LibriTTS) corpus only. However, it works well for other languages too because F0 is independent of language. If you want to train on singing corpus, it is recommended to train a new pitch extractor with the code here: [yl4579/PitchExtractor](https://github.com/yl4579/PitchExtractor).
70
+ - **[PLBERT](https://github.com/yl4579/StyleTTS2/tree/main/Utils/PLBERT) folder**: It contains the pre-trained [PL-BERT](https://arxiv.org/abs/2301.08810) model, which was pre-trained on English (Wikipedia) corpus only. It probably does not work very well on other languages, so you will need to train a different PL-BERT for different languages using the repo here: [yl4579/PL-BERT](https://github.com/yl4579/PL-BERT). You can also replace this module with other phoneme BERT models like [XPhoneBERT](https://arxiv.org/abs/2305.19709) which is pre-trained on more than 100 languages.
71
+
72
+ ### Common Issues
73
+ - **Loss becomes NaN**: If it is the first stage, please make sure you do not use mixed precision, as it can cause loss becoming NaN for some particular datasets when the batch size is not set properly (need to be more than 16 to work well). For the second stage, please also experiment with different batch sizes, with higher batch sizes being more likely to cause NaN loss values. We recommend the batch size to be 16. You can refer to issues [#10](https://github.com/yl4579/StyleTTS2/issues/10) and [#11](https://github.com/yl4579/StyleTTS2/issues/11) for more details.
74
+ - **Out of memory**: Please either use lower `batch_size` or `max_len`. You may refer to issue [#10](https://github.com/yl4579/StyleTTS2/issues/10) for more information.
75
+ - **Non-English dataset**: You can train on any language you want, but the current bottleneck is PL-BERT. The pre-trained PL-BERT in English would still work for other languages, but it will not be as good as English (you may refer to [yl4579/StyleTTS#10](https://github.com/yl4579/StyleTTS/issues/10) and [#70](https://github.com/yl4579/StyleTTS2/issues/70) for some examples to train on Chinese datasets). We are currently planning on training multi-lingual PL-BERT models for the best performance. You can go to [#41](https://github.com/yl4579/StyleTTS2/issues/41) if you would like to help.
76
+
77
+ ## Finetuning
78
+ The script is modified from `train_second.py` which uses DP, as DDP does not work for `train_second.py`. Please see the bold section above if you are willing to help with this problem.
79
+ ```bash
80
+ python train_finetune.py --config_path ./Configs/config_ft.yml
81
+ ```
82
+ Please make sure you have the LibriTTS checkpoint downloaded and unzipped under the folder. The default configuration `config_ft.yml` finetunes on LJSpeech with 1 hour of speech data (around 1k samples) for 50 epochs. This took about 4 hours to finish on four NVidia A100. The quality is slightly worse (similar to NaturalSpeech on LJSpeech) than LJSpeech model trained from scratch with 24 hours of speech data, which took around 2.5 days to finish on four A100. The samples can be found at [#65 (comment)](https://github.com/yl4579/StyleTTS2/discussions/65#discussioncomment-7668393).
83
+
84
+ If you are using a **single GPU** (because the script doesn't work with DDP) and want to save training speed and VRAM, you can do (thank [@korakoe](https://github.com/korakoe) for making the script at [#100](https://github.com/yl4579/StyleTTS2/pull/100)):
85
+ ```bash
86
+ accelerate launch --mixed_precision=fp16 --num_processes=1 train_finetune_accelerate.py --config_path ./Configs/config_ft.yml
87
+ ```
88
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/yl4579/StyleTTS2/blob/main/Colab/StyleTTS2_Finetune_Demo.ipynb)
89
+
90
+ ### Common Issues
91
+ [@Kreevoz](https://github.com/Kreevoz) has made detailed notes on common issues in finetuning, with suggestions in maximizing audio quality: [#81](https://github.com/yl4579/StyleTTS2/discussions/81). Some of these also apply to training from scratch. [@IIEleven11](https://github.com/IIEleven11) has also made a guideline for fine-tuning: [#128](https://github.com/yl4579/StyleTTS2/discussions/128).
92
+
93
+ - **Out of memory after `joint_epoch`**: This is likely because your GPU RAM is not big enough for SLM adversarial training run. You may skip that but the quality could be worse. Setting `joint_epoch` a larger number than `epochs` could skip the SLM advesariral training.
94
+
95
+ ## Inference
96
+ Please refer to [Inference_LJSpeech.ipynb](https://github.com/yl4579/StyleTTS2/blob/main/Demo/Inference_LJSpeech.ipynb) (single-speaker) and [Inference_LibriTTS.ipynb](https://github.com/yl4579/StyleTTS2/blob/main/Demo/Inference_LibriTTS.ipynb) (multi-speaker) for details. For LibriTTS, you will also need to download [reference_audio.zip](https://huggingface.co/yl4579/StyleTTS2-LibriTTS/resolve/main/reference_audio.zip) and unzip it under the `demo` before running the demo.
97
+
98
+ - The pretrained StyleTTS 2 on LJSpeech corpus in 24 kHz can be downloaded at [https://huggingface.co/yl4579/StyleTTS2-LJSpeech/tree/main](https://huggingface.co/yl4579/StyleTTS2-LJSpeech/tree/main).
99
+
100
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/yl4579/StyleTTS2/blob/main/Colab/StyleTTS2_Demo_LJSpeech.ipynb)
101
+
102
+ - The pretrained StyleTTS 2 model on LibriTTS can be downloaded at [https://huggingface.co/yl4579/StyleTTS2-LibriTTS/tree/main](https://huggingface.co/yl4579/StyleTTS2-LibriTTS/tree/main).
103
+
104
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/yl4579/StyleTTS2/blob/main/Colab/StyleTTS2_Demo_LibriTTS.ipynb)
105
+
106
+
107
+ You can import StyleTTS 2 and run it in your own code. However, the inference depends on a GPL-licensed package, so it is not included directly in this repository. A [GPL-licensed fork](https://github.com/NeuralVox/StyleTTS2) has an importable script, as well as an experimental streaming API, etc.
108
+
109
+ ***Before using these pre-trained models, you agree to inform the listeners that the speech samples are synthesized by the pre-trained models, unless you have the permission to use the voice you synthesize. That is, you agree to only use voices whose speakers grant the permission to have their voice cloned, either directly or by license before making synthesized voices public, or you have to publicly announce that these voices are synthesized if you do not have the permission to use these voices.***
110
+
111
+ ### Common Issues
112
+ - **High-pitched background noise**: This is caused by numerical float differences in older GPUs. For more details, please refer to issue [#13](https://github.com/yl4579/StyleTTS2/issues/13). Basically, you will need to use more modern GPUs or do inference on CPUs.
113
+ - **Pre-trained model license**: You only need to abide by the above rules if you use **the pre-trained models** and the voices are **NOT** in the training set, i.e., your reference speakers are not from any open access dataset. For more details of rules to use the pre-trained models, please see [#37](https://github.com/yl4579/StyleTTS2/issues/37).
114
+
115
+ ## References
116
+ - [archinetai/audio-diffusion-pytorch](https://github.com/archinetai/audio-diffusion-pytorch)
117
+ - [jik876/hifi-gan](https://github.com/jik876/hifi-gan)
118
+ - [rishikksh20/iSTFTNet-pytorch](https://github.com/rishikksh20/iSTFTNet-pytorch)
119
+ - [nii-yamagishilab/project-NN-Pytorch-scripts/project/01-nsf](https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts/tree/master/project/01-nsf)
styletts2/Utils/ASR/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+
styletts2/Utils/ASR/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (151 Bytes). View file
 
styletts2/Utils/ASR/__pycache__/layers.cpython-310.pyc ADDED
Binary file (11 kB). View file
 
styletts2/Utils/ASR/__pycache__/models.cpython-310.pyc ADDED
Binary file (6.12 kB). View file
 
styletts2/Utils/ASR/config.yml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_dir: "logs/20201006"
2
+ save_freq: 5
3
+ device: "cuda"
4
+ epochs: 180
5
+ batch_size: 64
6
+ pretrained_model: ""
7
+ train_data: "ASRDataset/train_list.txt"
8
+ val_data: "ASRDataset/val_list.txt"
9
+
10
+ dataset_params:
11
+ data_augmentation: false
12
+
13
+ preprocess_parasm:
14
+ sr: 24000
15
+ spect_params:
16
+ n_fft: 2048
17
+ win_length: 1200
18
+ hop_length: 300
19
+ mel_params:
20
+ n_mels: 80
21
+
22
+ model_params:
23
+ input_dim: 80
24
+ hidden_dim: 256
25
+ n_token: 178
26
+ token_embedding_dim: 512
27
+
28
+ optimizer_params:
29
+ lr: 0.0005
styletts2/Utils/ASR/layers.py ADDED
@@ -0,0 +1,354 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from typing import Optional, Any
5
+ from torch import Tensor
6
+ import torch.nn.functional as F
7
+ import torchaudio
8
+ import torchaudio.functional as audio_F
9
+
10
+ import random
11
+ random.seed(0)
12
+
13
+
14
+ def _get_activation_fn(activ):
15
+ if activ == 'relu':
16
+ return nn.ReLU()
17
+ elif activ == 'lrelu':
18
+ return nn.LeakyReLU(0.2)
19
+ elif activ == 'swish':
20
+ return lambda x: x*torch.sigmoid(x)
21
+ else:
22
+ raise RuntimeError('Unexpected activ type %s, expected [relu, lrelu, swish]' % activ)
23
+
24
+ class LinearNorm(torch.nn.Module):
25
+ def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
26
+ super(LinearNorm, self).__init__()
27
+ self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
28
+
29
+ torch.nn.init.xavier_uniform_(
30
+ self.linear_layer.weight,
31
+ gain=torch.nn.init.calculate_gain(w_init_gain))
32
+
33
+ def forward(self, x):
34
+ return self.linear_layer(x)
35
+
36
+
37
+ class ConvNorm(torch.nn.Module):
38
+ def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
39
+ padding=None, dilation=1, bias=True, w_init_gain='linear', param=None):
40
+ super(ConvNorm, self).__init__()
41
+ if padding is None:
42
+ assert(kernel_size % 2 == 1)
43
+ padding = int(dilation * (kernel_size - 1) / 2)
44
+
45
+ self.conv = torch.nn.Conv1d(in_channels, out_channels,
46
+ kernel_size=kernel_size, stride=stride,
47
+ padding=padding, dilation=dilation,
48
+ bias=bias)
49
+
50
+ torch.nn.init.xavier_uniform_(
51
+ self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
52
+
53
+ def forward(self, signal):
54
+ conv_signal = self.conv(signal)
55
+ return conv_signal
56
+
57
+ class CausualConv(nn.Module):
58
+ def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=1, dilation=1, bias=True, w_init_gain='linear', param=None):
59
+ super(CausualConv, self).__init__()
60
+ if padding is None:
61
+ assert(kernel_size % 2 == 1)
62
+ padding = int(dilation * (kernel_size - 1) / 2) * 2
63
+ else:
64
+ self.padding = padding * 2
65
+ self.conv = nn.Conv1d(in_channels, out_channels,
66
+ kernel_size=kernel_size, stride=stride,
67
+ padding=self.padding,
68
+ dilation=dilation,
69
+ bias=bias)
70
+
71
+ torch.nn.init.xavier_uniform_(
72
+ self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
73
+
74
+ def forward(self, x):
75
+ x = self.conv(x)
76
+ x = x[:, :, :-self.padding]
77
+ return x
78
+
79
+ class CausualBlock(nn.Module):
80
+ def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='lrelu'):
81
+ super(CausualBlock, self).__init__()
82
+ self.blocks = nn.ModuleList([
83
+ self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
84
+ for i in range(n_conv)])
85
+
86
+ def forward(self, x):
87
+ for block in self.blocks:
88
+ res = x
89
+ x = block(x)
90
+ x += res
91
+ return x
92
+
93
+ def _get_conv(self, hidden_dim, dilation, activ='lrelu', dropout_p=0.2):
94
+ layers = [
95
+ CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
96
+ _get_activation_fn(activ),
97
+ nn.BatchNorm1d(hidden_dim),
98
+ nn.Dropout(p=dropout_p),
99
+ CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
100
+ _get_activation_fn(activ),
101
+ nn.Dropout(p=dropout_p)
102
+ ]
103
+ return nn.Sequential(*layers)
104
+
105
+ class ConvBlock(nn.Module):
106
+ def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='relu'):
107
+ super().__init__()
108
+ self._n_groups = 8
109
+ self.blocks = nn.ModuleList([
110
+ self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
111
+ for i in range(n_conv)])
112
+
113
+
114
+ def forward(self, x):
115
+ for block in self.blocks:
116
+ res = x
117
+ x = block(x)
118
+ x += res
119
+ return x
120
+
121
+ def _get_conv(self, hidden_dim, dilation, activ='relu', dropout_p=0.2):
122
+ layers = [
123
+ ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
124
+ _get_activation_fn(activ),
125
+ nn.GroupNorm(num_groups=self._n_groups, num_channels=hidden_dim),
126
+ nn.Dropout(p=dropout_p),
127
+ ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
128
+ _get_activation_fn(activ),
129
+ nn.Dropout(p=dropout_p)
130
+ ]
131
+ return nn.Sequential(*layers)
132
+
133
+ class LocationLayer(nn.Module):
134
+ def __init__(self, attention_n_filters, attention_kernel_size,
135
+ attention_dim):
136
+ super(LocationLayer, self).__init__()
137
+ padding = int((attention_kernel_size - 1) / 2)
138
+ self.location_conv = ConvNorm(2, attention_n_filters,
139
+ kernel_size=attention_kernel_size,
140
+ padding=padding, bias=False, stride=1,
141
+ dilation=1)
142
+ self.location_dense = LinearNorm(attention_n_filters, attention_dim,
143
+ bias=False, w_init_gain='tanh')
144
+
145
+ def forward(self, attention_weights_cat):
146
+ processed_attention = self.location_conv(attention_weights_cat)
147
+ processed_attention = processed_attention.transpose(1, 2)
148
+ processed_attention = self.location_dense(processed_attention)
149
+ return processed_attention
150
+
151
+
152
+ class Attention(nn.Module):
153
+ def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
154
+ attention_location_n_filters, attention_location_kernel_size):
155
+ super(Attention, self).__init__()
156
+ self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
157
+ bias=False, w_init_gain='tanh')
158
+ self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
159
+ w_init_gain='tanh')
160
+ self.v = LinearNorm(attention_dim, 1, bias=False)
161
+ self.location_layer = LocationLayer(attention_location_n_filters,
162
+ attention_location_kernel_size,
163
+ attention_dim)
164
+ self.score_mask_value = -float("inf")
165
+
166
+ def get_alignment_energies(self, query, processed_memory,
167
+ attention_weights_cat):
168
+ """
169
+ PARAMS
170
+ ------
171
+ query: decoder output (batch, n_mel_channels * n_frames_per_step)
172
+ processed_memory: processed encoder outputs (B, T_in, attention_dim)
173
+ attention_weights_cat: cumulative and prev. att weights (B, 2, max_time)
174
+ RETURNS
175
+ -------
176
+ alignment (batch, max_time)
177
+ """
178
+
179
+ processed_query = self.query_layer(query.unsqueeze(1))
180
+ processed_attention_weights = self.location_layer(attention_weights_cat)
181
+ energies = self.v(torch.tanh(
182
+ processed_query + processed_attention_weights + processed_memory))
183
+
184
+ energies = energies.squeeze(-1)
185
+ return energies
186
+
187
+ def forward(self, attention_hidden_state, memory, processed_memory,
188
+ attention_weights_cat, mask):
189
+ """
190
+ PARAMS
191
+ ------
192
+ attention_hidden_state: attention rnn last output
193
+ memory: encoder outputs
194
+ processed_memory: processed encoder outputs
195
+ attention_weights_cat: previous and cummulative attention weights
196
+ mask: binary mask for padded data
197
+ """
198
+ alignment = self.get_alignment_energies(
199
+ attention_hidden_state, processed_memory, attention_weights_cat)
200
+
201
+ if mask is not None:
202
+ alignment.data.masked_fill_(mask, self.score_mask_value)
203
+
204
+ attention_weights = F.softmax(alignment, dim=1)
205
+ attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
206
+ attention_context = attention_context.squeeze(1)
207
+
208
+ return attention_context, attention_weights
209
+
210
+
211
+ class ForwardAttentionV2(nn.Module):
212
+ def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
213
+ attention_location_n_filters, attention_location_kernel_size):
214
+ super(ForwardAttentionV2, self).__init__()
215
+ self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
216
+ bias=False, w_init_gain='tanh')
217
+ self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
218
+ w_init_gain='tanh')
219
+ self.v = LinearNorm(attention_dim, 1, bias=False)
220
+ self.location_layer = LocationLayer(attention_location_n_filters,
221
+ attention_location_kernel_size,
222
+ attention_dim)
223
+ self.score_mask_value = -float(1e20)
224
+
225
+ def get_alignment_energies(self, query, processed_memory,
226
+ attention_weights_cat):
227
+ """
228
+ PARAMS
229
+ ------
230
+ query: decoder output (batch, n_mel_channels * n_frames_per_step)
231
+ processed_memory: processed encoder outputs (B, T_in, attention_dim)
232
+ attention_weights_cat: prev. and cumulative att weights (B, 2, max_time)
233
+ RETURNS
234
+ -------
235
+ alignment (batch, max_time)
236
+ """
237
+
238
+ processed_query = self.query_layer(query.unsqueeze(1))
239
+ processed_attention_weights = self.location_layer(attention_weights_cat)
240
+ energies = self.v(torch.tanh(
241
+ processed_query + processed_attention_weights + processed_memory))
242
+
243
+ energies = energies.squeeze(-1)
244
+ return energies
245
+
246
+ def forward(self, attention_hidden_state, memory, processed_memory,
247
+ attention_weights_cat, mask, log_alpha):
248
+ """
249
+ PARAMS
250
+ ------
251
+ attention_hidden_state: attention rnn last output
252
+ memory: encoder outputs
253
+ processed_memory: processed encoder outputs
254
+ attention_weights_cat: previous and cummulative attention weights
255
+ mask: binary mask for padded data
256
+ """
257
+ log_energy = self.get_alignment_energies(
258
+ attention_hidden_state, processed_memory, attention_weights_cat)
259
+
260
+ #log_energy =
261
+
262
+ if mask is not None:
263
+ log_energy.data.masked_fill_(mask, self.score_mask_value)
264
+
265
+ #attention_weights = F.softmax(alignment, dim=1)
266
+
267
+ #content_score = log_energy.unsqueeze(1) #[B, MAX_TIME] -> [B, 1, MAX_TIME]
268
+ #log_alpha = log_alpha.unsqueeze(2) #[B, MAX_TIME] -> [B, MAX_TIME, 1]
269
+
270
+ #log_total_score = log_alpha + content_score
271
+
272
+ #previous_attention_weights = attention_weights_cat[:,0,:]
273
+
274
+ log_alpha_shift_padded = []
275
+ max_time = log_energy.size(1)
276
+ for sft in range(2):
277
+ shifted = log_alpha[:,:max_time-sft]
278
+ shift_padded = F.pad(shifted, (sft,0), 'constant', self.score_mask_value)
279
+ log_alpha_shift_padded.append(shift_padded.unsqueeze(2))
280
+
281
+ biased = torch.logsumexp(torch.cat(log_alpha_shift_padded,2), 2)
282
+
283
+ log_alpha_new = biased + log_energy
284
+
285
+ attention_weights = F.softmax(log_alpha_new, dim=1)
286
+
287
+ attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
288
+ attention_context = attention_context.squeeze(1)
289
+
290
+ return attention_context, attention_weights, log_alpha_new
291
+
292
+
293
+ class PhaseShuffle2d(nn.Module):
294
+ def __init__(self, n=2):
295
+ super(PhaseShuffle2d, self).__init__()
296
+ self.n = n
297
+ self.random = random.Random(1)
298
+
299
+ def forward(self, x, move=None):
300
+ # x.size = (B, C, M, L)
301
+ if move is None:
302
+ move = self.random.randint(-self.n, self.n)
303
+
304
+ if move == 0:
305
+ return x
306
+ else:
307
+ left = x[:, :, :, :move]
308
+ right = x[:, :, :, move:]
309
+ shuffled = torch.cat([right, left], dim=3)
310
+ return shuffled
311
+
312
+ class PhaseShuffle1d(nn.Module):
313
+ def __init__(self, n=2):
314
+ super(PhaseShuffle1d, self).__init__()
315
+ self.n = n
316
+ self.random = random.Random(1)
317
+
318
+ def forward(self, x, move=None):
319
+ # x.size = (B, C, M, L)
320
+ if move is None:
321
+ move = self.random.randint(-self.n, self.n)
322
+
323
+ if move == 0:
324
+ return x
325
+ else:
326
+ left = x[:, :, :move]
327
+ right = x[:, :, move:]
328
+ shuffled = torch.cat([right, left], dim=2)
329
+
330
+ return shuffled
331
+
332
+ class MFCC(nn.Module):
333
+ def __init__(self, n_mfcc=40, n_mels=80):
334
+ super(MFCC, self).__init__()
335
+ self.n_mfcc = n_mfcc
336
+ self.n_mels = n_mels
337
+ self.norm = 'ortho'
338
+ dct_mat = audio_F.create_dct(self.n_mfcc, self.n_mels, self.norm)
339
+ self.register_buffer('dct_mat', dct_mat)
340
+
341
+ def forward(self, mel_specgram):
342
+ if len(mel_specgram.shape) == 2:
343
+ mel_specgram = mel_specgram.unsqueeze(0)
344
+ unsqueezed = True
345
+ else:
346
+ unsqueezed = False
347
+ # (channel, n_mels, time).tranpose(...) dot (n_mels, n_mfcc)
348
+ # -> (channel, time, n_mfcc).tranpose(...)
349
+ mfcc = torch.matmul(mel_specgram.transpose(1, 2), self.dct_mat).transpose(1, 2)
350
+
351
+ # unpack batch
352
+ if unsqueezed:
353
+ mfcc = mfcc.squeeze(0)
354
+ return mfcc
styletts2/Utils/ASR/models.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from torch.nn import TransformerEncoder
5
+ import torch.nn.functional as F
6
+ from .layers import MFCC, Attention, LinearNorm, ConvNorm, ConvBlock
7
+
8
+ class ASRCNN(nn.Module):
9
+ def __init__(self,
10
+ input_dim=80,
11
+ hidden_dim=256,
12
+ n_token=35,
13
+ n_layers=6,
14
+ token_embedding_dim=256,
15
+
16
+ ):
17
+ super().__init__()
18
+ self.n_token = n_token
19
+ self.n_down = 1
20
+ self.to_mfcc = MFCC()
21
+ self.init_cnn = ConvNorm(input_dim//2, hidden_dim, kernel_size=7, padding=3, stride=2)
22
+ self.cnns = nn.Sequential(
23
+ *[nn.Sequential(
24
+ ConvBlock(hidden_dim),
25
+ nn.GroupNorm(num_groups=1, num_channels=hidden_dim)
26
+ ) for n in range(n_layers)])
27
+ self.projection = ConvNorm(hidden_dim, hidden_dim // 2)
28
+ self.ctc_linear = nn.Sequential(
29
+ LinearNorm(hidden_dim//2, hidden_dim),
30
+ nn.ReLU(),
31
+ LinearNorm(hidden_dim, n_token))
32
+ self.asr_s2s = ASRS2S(
33
+ embedding_dim=token_embedding_dim,
34
+ hidden_dim=hidden_dim//2,
35
+ n_token=n_token)
36
+
37
+ def forward(self, x, src_key_padding_mask=None, text_input=None):
38
+ x = self.to_mfcc(x)
39
+ x = self.init_cnn(x)
40
+ x = self.cnns(x)
41
+ x = self.projection(x)
42
+ x = x.transpose(1, 2)
43
+ ctc_logit = self.ctc_linear(x)
44
+ if text_input is not None:
45
+ _, s2s_logit, s2s_attn = self.asr_s2s(x, src_key_padding_mask, text_input)
46
+ return ctc_logit, s2s_logit, s2s_attn
47
+ else:
48
+ return ctc_logit
49
+
50
+ def get_feature(self, x):
51
+ x = self.to_mfcc(x.squeeze(1))
52
+ x = self.init_cnn(x)
53
+ x = self.cnns(x)
54
+ x = self.projection(x)
55
+ return x
56
+
57
+ def length_to_mask(self, lengths):
58
+ mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
59
+ mask = torch.gt(mask+1, lengths.unsqueeze(1)).to(lengths.device)
60
+ return mask
61
+
62
+ def get_future_mask(self, out_length, unmask_future_steps=0):
63
+ """
64
+ Args:
65
+ out_length (int): returned mask shape is (out_length, out_length).
66
+ unmask_futre_steps (int): unmasking future step size.
67
+ Return:
68
+ mask (torch.BoolTensor): mask future timesteps mask[i, j] = True if i > j + unmask_future_steps else False
69
+ """
70
+ index_tensor = torch.arange(out_length).unsqueeze(0).expand(out_length, -1)
71
+ mask = torch.gt(index_tensor, index_tensor.T + unmask_future_steps)
72
+ return mask
73
+
74
+ class ASRS2S(nn.Module):
75
+ def __init__(self,
76
+ embedding_dim=256,
77
+ hidden_dim=512,
78
+ n_location_filters=32,
79
+ location_kernel_size=63,
80
+ n_token=40):
81
+ super(ASRS2S, self).__init__()
82
+ self.embedding = nn.Embedding(n_token, embedding_dim)
83
+ val_range = math.sqrt(6 / hidden_dim)
84
+ self.embedding.weight.data.uniform_(-val_range, val_range)
85
+
86
+ self.decoder_rnn_dim = hidden_dim
87
+ self.project_to_n_symbols = nn.Linear(self.decoder_rnn_dim, n_token)
88
+ self.attention_layer = Attention(
89
+ self.decoder_rnn_dim,
90
+ hidden_dim,
91
+ hidden_dim,
92
+ n_location_filters,
93
+ location_kernel_size
94
+ )
95
+ self.decoder_rnn = nn.LSTMCell(self.decoder_rnn_dim + embedding_dim, self.decoder_rnn_dim)
96
+ self.project_to_hidden = nn.Sequential(
97
+ LinearNorm(self.decoder_rnn_dim * 2, hidden_dim),
98
+ nn.Tanh())
99
+ self.sos = 1
100
+ self.eos = 2
101
+
102
+ def initialize_decoder_states(self, memory, mask):
103
+ """
104
+ moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
105
+ """
106
+ B, L, H = memory.shape
107
+ self.decoder_hidden = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
108
+ self.decoder_cell = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
109
+ self.attention_weights = torch.zeros((B, L)).type_as(memory)
110
+ self.attention_weights_cum = torch.zeros((B, L)).type_as(memory)
111
+ self.attention_context = torch.zeros((B, H)).type_as(memory)
112
+ self.memory = memory
113
+ self.processed_memory = self.attention_layer.memory_layer(memory)
114
+ self.mask = mask
115
+ self.unk_index = 3
116
+ self.random_mask = 0.1
117
+
118
+ def forward(self, memory, memory_mask, text_input):
119
+ """
120
+ moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
121
+ moemory_mask.shape = (B, L, )
122
+ texts_input.shape = (B, T)
123
+ """
124
+ self.initialize_decoder_states(memory, memory_mask)
125
+ # text random mask
126
+ random_mask = (torch.rand(text_input.shape) < self.random_mask).to(text_input.device)
127
+ _text_input = text_input.clone()
128
+ _text_input.masked_fill_(random_mask, self.unk_index)
129
+ decoder_inputs = self.embedding(_text_input).transpose(0, 1) # -> [T, B, channel]
130
+ start_embedding = self.embedding(
131
+ torch.LongTensor([self.sos]*decoder_inputs.size(1)).to(decoder_inputs.device))
132
+ decoder_inputs = torch.cat((start_embedding.unsqueeze(0), decoder_inputs), dim=0)
133
+
134
+ hidden_outputs, logit_outputs, alignments = [], [], []
135
+ while len(hidden_outputs) < decoder_inputs.size(0):
136
+
137
+ decoder_input = decoder_inputs[len(hidden_outputs)]
138
+ hidden, logit, attention_weights = self.decode(decoder_input)
139
+ hidden_outputs += [hidden]
140
+ logit_outputs += [logit]
141
+ alignments += [attention_weights]
142
+
143
+ hidden_outputs, logit_outputs, alignments = \
144
+ self.parse_decoder_outputs(
145
+ hidden_outputs, logit_outputs, alignments)
146
+
147
+ return hidden_outputs, logit_outputs, alignments
148
+
149
+
150
+ def decode(self, decoder_input):
151
+
152
+ cell_input = torch.cat((decoder_input, self.attention_context), -1)
153
+ self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
154
+ cell_input,
155
+ (self.decoder_hidden, self.decoder_cell))
156
+
157
+ attention_weights_cat = torch.cat(
158
+ (self.attention_weights.unsqueeze(1),
159
+ self.attention_weights_cum.unsqueeze(1)),dim=1)
160
+
161
+ self.attention_context, self.attention_weights = self.attention_layer(
162
+ self.decoder_hidden,
163
+ self.memory,
164
+ self.processed_memory,
165
+ attention_weights_cat,
166
+ self.mask)
167
+
168
+ self.attention_weights_cum += self.attention_weights
169
+
170
+ hidden_and_context = torch.cat((self.decoder_hidden, self.attention_context), -1)
171
+ hidden = self.project_to_hidden(hidden_and_context)
172
+
173
+ # dropout to increasing g
174
+ logit = self.project_to_n_symbols(F.dropout(hidden, 0.5, self.training))
175
+
176
+ return hidden, logit, self.attention_weights
177
+
178
+ def parse_decoder_outputs(self, hidden, logit, alignments):
179
+
180
+ # -> [B, T_out + 1, max_time]
181
+ alignments = torch.stack(alignments).transpose(0,1)
182
+ # [T_out + 1, B, n_symbols] -> [B, T_out + 1, n_symbols]
183
+ logit = torch.stack(logit).transpose(0, 1).contiguous()
184
+ hidden = torch.stack(hidden).transpose(0, 1).contiguous()
185
+
186
+ return hidden, logit, alignments
styletts2/Utils/JDC/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+
styletts2/Utils/JDC/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (151 Bytes). View file
 
styletts2/Utils/JDC/__pycache__/model.cpython-310.pyc ADDED
Binary file (4.78 kB). View file
 
styletts2/Utils/JDC/model.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Implementation of model from:
3
+ Kum et al. - "Joint Detection and Classification of Singing Voice Melody Using
4
+ Convolutional Recurrent Neural Networks" (2019)
5
+ Link: https://www.semanticscholar.org/paper/Joint-Detection-and-Classification-of-Singing-Voice-Kum-Nam/60a2ad4c7db43bace75805054603747fcd062c0d
6
+ """
7
+ import torch
8
+ from torch import nn
9
+
10
+ class JDCNet(nn.Module):
11
+ """
12
+ Joint Detection and Classification Network model for singing voice melody.
13
+ """
14
+ def __init__(self, num_class=722, seq_len=31, leaky_relu_slope=0.01):
15
+ super().__init__()
16
+ self.num_class = num_class
17
+
18
+ # input = (b, 1, 31, 513), b = batch size
19
+ self.conv_block = nn.Sequential(
20
+ nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, padding=1, bias=False), # out: (b, 64, 31, 513)
21
+ nn.BatchNorm2d(num_features=64),
22
+ nn.LeakyReLU(leaky_relu_slope, inplace=True),
23
+ nn.Conv2d(64, 64, 3, padding=1, bias=False), # (b, 64, 31, 513)
24
+ )
25
+
26
+ # res blocks
27
+ self.res_block1 = ResBlock(in_channels=64, out_channels=128) # (b, 128, 31, 128)
28
+ self.res_block2 = ResBlock(in_channels=128, out_channels=192) # (b, 192, 31, 32)
29
+ self.res_block3 = ResBlock(in_channels=192, out_channels=256) # (b, 256, 31, 8)
30
+
31
+ # pool block
32
+ self.pool_block = nn.Sequential(
33
+ nn.BatchNorm2d(num_features=256),
34
+ nn.LeakyReLU(leaky_relu_slope, inplace=True),
35
+ nn.MaxPool2d(kernel_size=(1, 4)), # (b, 256, 31, 2)
36
+ nn.Dropout(p=0.2),
37
+ )
38
+
39
+ # maxpool layers (for auxiliary network inputs)
40
+ # in = (b, 128, 31, 513) from conv_block, out = (b, 128, 31, 2)
41
+ self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 40))
42
+ # in = (b, 128, 31, 128) from res_block1, out = (b, 128, 31, 2)
43
+ self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 20))
44
+ # in = (b, 128, 31, 32) from res_block2, out = (b, 128, 31, 2)
45
+ self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 10))
46
+
47
+ # in = (b, 640, 31, 2), out = (b, 256, 31, 2)
48
+ self.detector_conv = nn.Sequential(
49
+ nn.Conv2d(640, 256, 1, bias=False),
50
+ nn.BatchNorm2d(256),
51
+ nn.LeakyReLU(leaky_relu_slope, inplace=True),
52
+ nn.Dropout(p=0.2),
53
+ )
54
+
55
+ # input: (b, 31, 512) - resized from (b, 256, 31, 2)
56
+ self.bilstm_classifier = nn.LSTM(
57
+ input_size=512, hidden_size=256,
58
+ batch_first=True, bidirectional=True) # (b, 31, 512)
59
+
60
+ # input: (b, 31, 512) - resized from (b, 256, 31, 2)
61
+ self.bilstm_detector = nn.LSTM(
62
+ input_size=512, hidden_size=256,
63
+ batch_first=True, bidirectional=True) # (b, 31, 512)
64
+
65
+ # input: (b * 31, 512)
66
+ self.classifier = nn.Linear(in_features=512, out_features=self.num_class) # (b * 31, num_class)
67
+
68
+ # input: (b * 31, 512)
69
+ self.detector = nn.Linear(in_features=512, out_features=2) # (b * 31, 2) - binary classifier
70
+
71
+ # initialize weights
72
+ self.apply(self.init_weights)
73
+
74
+ def get_feature_GAN(self, x):
75
+ seq_len = x.shape[-2]
76
+ x = x.float().transpose(-1, -2)
77
+
78
+ convblock_out = self.conv_block(x)
79
+
80
+ resblock1_out = self.res_block1(convblock_out)
81
+ resblock2_out = self.res_block2(resblock1_out)
82
+ resblock3_out = self.res_block3(resblock2_out)
83
+ poolblock_out = self.pool_block[0](resblock3_out)
84
+ poolblock_out = self.pool_block[1](poolblock_out)
85
+
86
+ return poolblock_out.transpose(-1, -2)
87
+
88
+ def get_feature(self, x):
89
+ seq_len = x.shape[-2]
90
+ x = x.float().transpose(-1, -2)
91
+
92
+ convblock_out = self.conv_block(x)
93
+
94
+ resblock1_out = self.res_block1(convblock_out)
95
+ resblock2_out = self.res_block2(resblock1_out)
96
+ resblock3_out = self.res_block3(resblock2_out)
97
+ poolblock_out = self.pool_block[0](resblock3_out)
98
+ poolblock_out = self.pool_block[1](poolblock_out)
99
+
100
+ return self.pool_block[2](poolblock_out)
101
+
102
+ def forward(self, x):
103
+ """
104
+ Returns:
105
+ classification_prediction, detection_prediction
106
+ sizes: (b, 31, 722), (b, 31, 2)
107
+ """
108
+ ###############################
109
+ # forward pass for classifier #
110
+ ###############################
111
+ seq_len = x.shape[-1]
112
+ x = x.float().transpose(-1, -2)
113
+
114
+ convblock_out = self.conv_block(x)
115
+
116
+ resblock1_out = self.res_block1(convblock_out)
117
+ resblock2_out = self.res_block2(resblock1_out)
118
+ resblock3_out = self.res_block3(resblock2_out)
119
+
120
+
121
+ poolblock_out = self.pool_block[0](resblock3_out)
122
+ poolblock_out = self.pool_block[1](poolblock_out)
123
+ GAN_feature = poolblock_out.transpose(-1, -2)
124
+ poolblock_out = self.pool_block[2](poolblock_out)
125
+
126
+ # (b, 256, 31, 2) => (b, 31, 256, 2) => (b, 31, 512)
127
+ classifier_out = poolblock_out.permute(0, 2, 1, 3).contiguous().view((-1, seq_len, 512))
128
+ classifier_out, _ = self.bilstm_classifier(classifier_out) # ignore the hidden states
129
+
130
+ classifier_out = classifier_out.contiguous().view((-1, 512)) # (b * 31, 512)
131
+ classifier_out = self.classifier(classifier_out)
132
+ classifier_out = classifier_out.view((-1, seq_len, self.num_class)) # (b, 31, num_class)
133
+
134
+ # sizes: (b, 31, 722), (b, 31, 2)
135
+ # classifier output consists of predicted pitch classes per frame
136
+ # detector output consists of: (isvoice, notvoice) estimates per frame
137
+ return torch.abs(classifier_out.squeeze()), GAN_feature, poolblock_out
138
+
139
+ @staticmethod
140
+ def init_weights(m):
141
+ if isinstance(m, nn.Linear):
142
+ nn.init.kaiming_uniform_(m.weight)
143
+ if m.bias is not None:
144
+ nn.init.constant_(m.bias, 0)
145
+ elif isinstance(m, nn.Conv2d):
146
+ nn.init.xavier_normal_(m.weight)
147
+ elif isinstance(m, nn.LSTM) or isinstance(m, nn.LSTMCell):
148
+ for p in m.parameters():
149
+ if p.data is None:
150
+ continue
151
+
152
+ if len(p.shape) >= 2:
153
+ nn.init.orthogonal_(p.data)
154
+ else:
155
+ nn.init.normal_(p.data)
156
+
157
+
158
+ class ResBlock(nn.Module):
159
+ def __init__(self, in_channels: int, out_channels: int, leaky_relu_slope=0.01):
160
+ super().__init__()
161
+ self.downsample = in_channels != out_channels
162
+
163
+ # BN / LReLU / MaxPool layer before the conv layer - see Figure 1b in the paper
164
+ self.pre_conv = nn.Sequential(
165
+ nn.BatchNorm2d(num_features=in_channels),
166
+ nn.LeakyReLU(leaky_relu_slope, inplace=True),
167
+ nn.MaxPool2d(kernel_size=(1, 2)), # apply downsampling on the y axis only
168
+ )
169
+
170
+ # conv layers
171
+ self.conv = nn.Sequential(
172
+ nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
173
+ kernel_size=3, padding=1, bias=False),
174
+ nn.BatchNorm2d(out_channels),
175
+ nn.LeakyReLU(leaky_relu_slope, inplace=True),
176
+ nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False),
177
+ )
178
+
179
+ # 1 x 1 convolution layer to match the feature dimensions
180
+ self.conv1by1 = None
181
+ if self.downsample:
182
+ self.conv1by1 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
183
+
184
+ def forward(self, x):
185
+ x = self.pre_conv(x)
186
+ if self.downsample:
187
+ x = self.conv(x) + self.conv1by1(x)
188
+ else:
189
+ x = self.conv(x) + x
190
+ return x
styletts2/Utils/PLBERT/__pycache__/util.cpython-310.pyc ADDED
Binary file (1.87 kB). View file
 
styletts2/Utils/PLBERT/config.yml ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_dir: "Checkpoint"
2
+ mixed_precision: "fp16"
3
+ data_folder: "wikipedia_20220301.en.processed"
4
+ batch_size: 192
5
+ save_interval: 5000
6
+ log_interval: 10
7
+ num_process: 1 # number of GPUs
8
+ num_steps: 1000000
9
+
10
+ dataset_params:
11
+ tokenizer: "transfo-xl-wt103"
12
+ token_separator: " " # token used for phoneme separator (space)
13
+ token_mask: "M" # token used for phoneme mask (M)
14
+ word_separator: 3039 # token used for word separator (<formula>)
15
+ token_maps: "token_maps.pkl" # token map path
16
+
17
+ max_mel_length: 512 # max phoneme length
18
+
19
+ word_mask_prob: 0.15 # probability to mask the entire word
20
+ phoneme_mask_prob: 0.1 # probability to mask each phoneme
21
+ replace_prob: 0.2 # probablity to replace phonemes
22
+
23
+ model_params:
24
+ vocab_size: 178
25
+ hidden_size: 768
26
+ num_attention_heads: 12
27
+ intermediate_size: 2048
28
+ max_position_embeddings: 512
29
+ num_hidden_layers: 12
30
+ dropout: 0.1
styletts2/Utils/PLBERT/util.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import yaml
3
+ import torch
4
+ from transformers import AlbertConfig, AlbertModel
5
+
6
+ class CustomAlbert(AlbertModel):
7
+ def forward(self, *args, **kwargs):
8
+ # Call the original forward method
9
+ outputs = super().forward(*args, **kwargs)
10
+
11
+ # Only return the last_hidden_state
12
+ return outputs.last_hidden_state
13
+
14
+
15
+ def load_plbert(log_dir, config_path=None, checkpoint_path=None):
16
+ """
17
+
18
+ :param log_dir:
19
+ :param config_path:
20
+ :param checkpoint_path:
21
+ :return:
22
+ """
23
+ if not config_path:
24
+ config_path = os.path.join(log_dir, "config.yml")
25
+ plbert_config = yaml.safe_load(open(config_path))
26
+
27
+ albert_base_configuration = AlbertConfig(**plbert_config['model_params'])
28
+ bert = CustomAlbert(albert_base_configuration)
29
+
30
+ if not checkpoint_path:
31
+ files = os.listdir(log_dir)
32
+ ckpts = []
33
+ for f in os.listdir(log_dir):
34
+ if f.startswith("step_"): ckpts.append(f)
35
+
36
+ iters = [int(f.split('_')[-1].split('.')[0]) for f in ckpts if os.path.isfile(os.path.join(log_dir, f))]
37
+ iters = sorted(iters)[-1]
38
+ checkpoint_path = log_dir / f"step_{iters}.t7"
39
+
40
+ checkpoint = torch.load(checkpoint_path, map_location='cpu')
41
+ state_dict = checkpoint['net']
42
+ from collections import OrderedDict
43
+ new_state_dict = OrderedDict()
44
+ for k, v in state_dict.items():
45
+ name = k[7:] # remove `module.`
46
+ if name.startswith('encoder.'):
47
+ name = name[8:] # remove `encoder.`
48
+ new_state_dict[name] = v
49
+ del new_state_dict["embeddings.position_ids"]
50
+ bert.load_state_dict(new_state_dict, strict=False)
51
+
52
+ return bert
styletts2/Utils/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+
styletts2/Utils/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (147 Bytes). View file
 
styletts2/__init__.py ADDED
File without changes
styletts2/losses.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.nn.functional as F
4
+ import torchaudio
5
+ from transformers import AutoModel
6
+
7
+ class SpectralConvergengeLoss(torch.nn.Module):
8
+ """Spectral convergence loss module."""
9
+
10
+ def __init__(self):
11
+ """Initilize spectral convergence loss module."""
12
+ super(SpectralConvergengeLoss, self).__init__()
13
+
14
+ def forward(self, x_mag, y_mag):
15
+ """Calculate forward propagation.
16
+ Args:
17
+ x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
18
+ y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
19
+ Returns:
20
+ Tensor: Spectral convergence loss value.
21
+ """
22
+ return torch.norm(y_mag - x_mag, p=1) / torch.norm(y_mag, p=1)
23
+
24
+ class STFTLoss(torch.nn.Module):
25
+ """STFT loss module."""
26
+
27
+ def __init__(self, fft_size=1024, shift_size=120, win_length=600, window=torch.hann_window):
28
+ """Initialize STFT loss module."""
29
+ super(STFTLoss, self).__init__()
30
+ self.fft_size = fft_size
31
+ self.shift_size = shift_size
32
+ self.win_length = win_length
33
+ self.to_mel = torchaudio.transforms.MelSpectrogram(sample_rate=24000, n_fft=fft_size, win_length=win_length, hop_length=shift_size, window_fn=window)
34
+
35
+ self.spectral_convergenge_loss = SpectralConvergengeLoss()
36
+
37
+ def forward(self, x, y):
38
+ """Calculate forward propagation.
39
+ Args:
40
+ x (Tensor): Predicted signal (B, T).
41
+ y (Tensor): Groundtruth signal (B, T).
42
+ Returns:
43
+ Tensor: Spectral convergence loss value.
44
+ Tensor: Log STFT magnitude loss value.
45
+ """
46
+ x_mag = self.to_mel(x)
47
+ mean, std = -4, 4
48
+ x_mag = (torch.log(1e-5 + x_mag) - mean) / std
49
+
50
+ y_mag = self.to_mel(y)
51
+ mean, std = -4, 4
52
+ y_mag = (torch.log(1e-5 + y_mag) - mean) / std
53
+
54
+ sc_loss = self.spectral_convergenge_loss(x_mag, y_mag)
55
+ return sc_loss
56
+
57
+
58
+ class MultiResolutionSTFTLoss(torch.nn.Module):
59
+ """Multi resolution STFT loss module."""
60
+
61
+ def __init__(self,
62
+ fft_sizes=[1024, 2048, 512],
63
+ hop_sizes=[120, 240, 50],
64
+ win_lengths=[600, 1200, 240],
65
+ window=torch.hann_window):
66
+ """Initialize Multi resolution STFT loss module.
67
+ Args:
68
+ fft_sizes (list): List of FFT sizes.
69
+ hop_sizes (list): List of hop sizes.
70
+ win_lengths (list): List of window lengths.
71
+ window (str): Window function type.
72
+ """
73
+ super(MultiResolutionSTFTLoss, self).__init__()
74
+ assert len(fft_sizes) == len(hop_sizes) == len(win_lengths)
75
+ self.stft_losses = torch.nn.ModuleList()
76
+ for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
77
+ self.stft_losses += [STFTLoss(fs, ss, wl, window)]
78
+
79
+ def forward(self, x, y):
80
+ """Calculate forward propagation.
81
+ Args:
82
+ x (Tensor): Predicted signal (B, T).
83
+ y (Tensor): Groundtruth signal (B, T).
84
+ Returns:
85
+ Tensor: Multi resolution spectral convergence loss value.
86
+ Tensor: Multi resolution log STFT magnitude loss value.
87
+ """
88
+ sc_loss = 0.0
89
+ for f in self.stft_losses:
90
+ sc_l = f(x, y)
91
+ sc_loss += sc_l
92
+ sc_loss /= len(self.stft_losses)
93
+
94
+ return sc_loss
95
+
96
+
97
+ def feature_loss(fmap_r, fmap_g):
98
+ loss = 0
99
+ for dr, dg in zip(fmap_r, fmap_g):
100
+ for rl, gl in zip(dr, dg):
101
+ loss += torch.mean(torch.abs(rl - gl))
102
+
103
+ return loss*2
104
+
105
+
106
+ def discriminator_loss(disc_real_outputs, disc_generated_outputs):
107
+ loss = 0
108
+ r_losses = []
109
+ g_losses = []
110
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
111
+ r_loss = torch.mean((1-dr)**2)
112
+ g_loss = torch.mean(dg**2)
113
+ loss += (r_loss + g_loss)
114
+ r_losses.append(r_loss.item())
115
+ g_losses.append(g_loss.item())
116
+
117
+ return loss, r_losses, g_losses
118
+
119
+
120
+ def generator_loss(disc_outputs):
121
+ loss = 0
122
+ gen_losses = []
123
+ for dg in disc_outputs:
124
+ l = torch.mean((1-dg)**2)
125
+ gen_losses.append(l)
126
+ loss += l
127
+
128
+ return loss, gen_losses
129
+
130
+ """ https://dl.acm.org/doi/abs/10.1145/3573834.3574506 """
131
+ def discriminator_TPRLS_loss(disc_real_outputs, disc_generated_outputs):
132
+ loss = 0
133
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
134
+ tau = 0.04
135
+ m_DG = torch.median((dr-dg))
136
+ L_rel = torch.mean((((dr - dg) - m_DG)**2)[dr < dg + m_DG])
137
+ loss += tau - F.relu(tau - L_rel)
138
+ return loss
139
+
140
+ def generator_TPRLS_loss(disc_real_outputs, disc_generated_outputs):
141
+ loss = 0
142
+ for dg, dr in zip(disc_real_outputs, disc_generated_outputs):
143
+ tau = 0.04
144
+ m_DG = torch.median((dr-dg))
145
+ L_rel = torch.mean((((dr - dg) - m_DG)**2)[dr < dg + m_DG])
146
+ loss += tau - F.relu(tau - L_rel)
147
+ return loss
148
+
149
+ class GeneratorLoss(torch.nn.Module):
150
+
151
+ def __init__(self, mpd, msd):
152
+ super(GeneratorLoss, self).__init__()
153
+ self.mpd = mpd
154
+ self.msd = msd
155
+
156
+ def forward(self, y, y_hat):
157
+ y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = self.mpd(y, y_hat)
158
+ y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = self.msd(y, y_hat)
159
+ loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
160
+ loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
161
+ loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
162
+ loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
163
+
164
+ loss_rel = generator_TPRLS_loss(y_df_hat_r, y_df_hat_g) + generator_TPRLS_loss(y_ds_hat_r, y_ds_hat_g)
165
+
166
+ loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_rel
167
+
168
+ return loss_gen_all.mean()
169
+
170
+ class DiscriminatorLoss(torch.nn.Module):
171
+
172
+ def __init__(self, mpd, msd):
173
+ super(DiscriminatorLoss, self).__init__()
174
+ self.mpd = mpd
175
+ self.msd = msd
176
+
177
+ def forward(self, y, y_hat):
178
+ # MPD
179
+ y_df_hat_r, y_df_hat_g, _, _ = self.mpd(y, y_hat)
180
+ loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(y_df_hat_r, y_df_hat_g)
181
+ # MSD
182
+ y_ds_hat_r, y_ds_hat_g, _, _ = self.msd(y, y_hat)
183
+ loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(y_ds_hat_r, y_ds_hat_g)
184
+
185
+ loss_rel = discriminator_TPRLS_loss(y_df_hat_r, y_df_hat_g) + discriminator_TPRLS_loss(y_ds_hat_r, y_ds_hat_g)
186
+
187
+
188
+ d_loss = loss_disc_s + loss_disc_f + loss_rel
189
+
190
+ return d_loss.mean()
191
+
192
+
193
+ class WavLMLoss(torch.nn.Module):
194
+
195
+ def __init__(self, model, wd, model_sr, slm_sr=16000):
196
+ super(WavLMLoss, self).__init__()
197
+ self.wavlm = AutoModel.from_pretrained(model)
198
+ self.wd = wd
199
+ self.resample = torchaudio.transforms.Resample(model_sr, slm_sr)
200
+
201
+ def forward(self, wav, y_rec):
202
+ with torch.no_grad():
203
+ wav_16 = self.resample(wav)
204
+ wav_embeddings = self.wavlm(input_values=wav_16, output_hidden_states=True).hidden_states
205
+ y_rec_16 = self.resample(y_rec)
206
+ y_rec_embeddings = self.wavlm(input_values=y_rec_16.squeeze(), output_hidden_states=True).hidden_states
207
+
208
+ floss = 0
209
+ for er, eg in zip(wav_embeddings, y_rec_embeddings):
210
+ floss += torch.mean(torch.abs(er - eg))
211
+
212
+ return floss.mean()
213
+
214
+ def generator(self, y_rec):
215
+ y_rec_16 = self.resample(y_rec)
216
+ y_rec_embeddings = self.wavlm(input_values=y_rec_16, output_hidden_states=True).hidden_states
217
+ y_rec_embeddings = torch.stack(y_rec_embeddings, dim=1).transpose(-1, -2).flatten(start_dim=1, end_dim=2)
218
+ y_df_hat_g = self.wd(y_rec_embeddings)
219
+ loss_gen = torch.mean((1-y_df_hat_g)**2)
220
+
221
+ return loss_gen
222
+
223
+ def discriminator(self, wav, y_rec):
224
+ with torch.no_grad():
225
+ wav_16 = self.resample(wav)
226
+ wav_embeddings = self.wavlm(input_values=wav_16, output_hidden_states=True).hidden_states
227
+ y_rec_16 = self.resample(y_rec)
228
+ y_rec_embeddings = self.wavlm(input_values=y_rec_16, output_hidden_states=True).hidden_states
229
+
230
+ y_embeddings = torch.stack(wav_embeddings, dim=1).transpose(-1, -2).flatten(start_dim=1, end_dim=2)
231
+ y_rec_embeddings = torch.stack(y_rec_embeddings, dim=1).transpose(-1, -2).flatten(start_dim=1, end_dim=2)
232
+
233
+ y_d_rs = self.wd(y_embeddings)
234
+ y_d_gs = self.wd(y_rec_embeddings)
235
+
236
+ y_df_hat_r, y_df_hat_g = y_d_rs, y_d_gs
237
+
238
+ r_loss = torch.mean((1-y_df_hat_r)**2)
239
+ g_loss = torch.mean((y_df_hat_g)**2)
240
+
241
+ loss_disc_f = r_loss + g_loss
242
+
243
+ return loss_disc_f.mean()
244
+
245
+ def discriminator_forward(self, wav):
246
+ with torch.no_grad():
247
+ wav_16 = self.resample(wav)
248
+ wav_embeddings = self.wavlm(input_values=wav_16, output_hidden_states=True).hidden_states
249
+ y_embeddings = torch.stack(wav_embeddings, dim=1).transpose(-1, -2).flatten(start_dim=1, end_dim=2)
250
+
251
+ y_d_rs = self.wd(y_embeddings)
252
+
253
+ return y_d_rs
styletts2/meldataset.py ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #coding: utf-8
2
+ import os
3
+ import os.path as osp
4
+ import time
5
+ import random
6
+ import numpy as np
7
+ import random
8
+ import soundfile as sf
9
+ import librosa
10
+
11
+ import torch
12
+ from torch import nn
13
+ import torch.nn.functional as F
14
+ import torchaudio
15
+ from torch.utils.data import DataLoader
16
+
17
+ import logging
18
+ logger = logging.getLogger(__name__)
19
+ logger.setLevel(logging.DEBUG)
20
+
21
+ import pandas as pd
22
+
23
+ _pad = "$"
24
+ _punctuation = ';:,.!?¡¿—…"«»“” '
25
+ _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
26
+ _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
27
+
28
+ # Export all symbols:
29
+ symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
30
+
31
+ dicts = {}
32
+ for i in range(len((symbols))):
33
+ dicts[symbols[i]] = i
34
+
35
+ class TextCleaner:
36
+ def __init__(self, dummy=None):
37
+ self.word_index_dictionary = dicts
38
+ def __call__(self, text):
39
+ indexes = []
40
+ for char in text:
41
+ try:
42
+ indexes.append(self.word_index_dictionary[char])
43
+ except KeyError:
44
+ print(text)
45
+ return indexes
46
+
47
+ np.random.seed(1)
48
+ random.seed(1)
49
+ SPECT_PARAMS = {
50
+ "n_fft": 2048,
51
+ "win_length": 1200,
52
+ "hop_length": 300
53
+ }
54
+ MEL_PARAMS = {
55
+ "n_mels": 80,
56
+ }
57
+
58
+ to_mel = torchaudio.transforms.MelSpectrogram(
59
+ n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
60
+ mean, std = -4, 4
61
+
62
+ def preprocess(wave):
63
+ wave_tensor = torch.from_numpy(wave).float()
64
+ mel_tensor = to_mel(wave_tensor)
65
+ mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
66
+ return mel_tensor
67
+
68
+ class FilePathDataset(torch.utils.data.Dataset):
69
+ def __init__(self,
70
+ data_list,
71
+ root_path,
72
+ sr=24000,
73
+ data_augmentation=False,
74
+ validation=False,
75
+ OOD_data="Data/OOD_texts.txt",
76
+ min_length=50,
77
+ ):
78
+
79
+ spect_params = SPECT_PARAMS
80
+ mel_params = MEL_PARAMS
81
+
82
+ _data_list = [l.strip().split('|') for l in data_list]
83
+ self.data_list = [data if len(data) == 3 else (*data, 0) for data in _data_list]
84
+ self.text_cleaner = TextCleaner()
85
+ self.sr = sr
86
+
87
+ self.df = pd.DataFrame(self.data_list)
88
+
89
+ self.to_melspec = torchaudio.transforms.MelSpectrogram(**MEL_PARAMS)
90
+
91
+ self.mean, self.std = -4, 4
92
+ self.data_augmentation = data_augmentation and (not validation)
93
+ self.max_mel_length = 192
94
+
95
+ self.min_length = min_length
96
+ with open(OOD_data, 'r', encoding='utf-8') as f:
97
+ tl = f.readlines()
98
+ idx = 1 if '.wav' in tl[0].split('|')[0] else 0
99
+ self.ptexts = [t.split('|')[idx] for t in tl]
100
+
101
+ self.root_path = root_path
102
+
103
+ def __len__(self):
104
+ return len(self.data_list)
105
+
106
+ def __getitem__(self, idx):
107
+ data = self.data_list[idx]
108
+ path = data[0]
109
+
110
+ wave, text_tensor, speaker_id = self._load_tensor(data)
111
+
112
+ mel_tensor = preprocess(wave).squeeze()
113
+
114
+ acoustic_feature = mel_tensor.squeeze()
115
+ length_feature = acoustic_feature.size(1)
116
+ acoustic_feature = acoustic_feature[:, :(length_feature - length_feature % 2)]
117
+
118
+ # get reference sample
119
+ ref_data = (self.df[self.df[2] == str(speaker_id)]).sample(n=1).iloc[0].tolist()
120
+ ref_mel_tensor, ref_label = self._load_data(ref_data[:3])
121
+
122
+ # get OOD text
123
+
124
+ ps = ""
125
+
126
+ while len(ps) < self.min_length:
127
+ rand_idx = np.random.randint(0, len(self.ptexts) - 1)
128
+ ps = self.ptexts[rand_idx]
129
+
130
+ text = self.text_cleaner(ps)
131
+ text.insert(0, 0)
132
+ text.append(0)
133
+
134
+ ref_text = torch.LongTensor(text)
135
+
136
+ return speaker_id, acoustic_feature, text_tensor, ref_text, ref_mel_tensor, ref_label, path, wave
137
+
138
+ def _load_tensor(self, data):
139
+ wave_path, text, speaker_id = data
140
+ speaker_id = int(speaker_id)
141
+ wave, sr = sf.read(osp.join(self.root_path, wave_path))
142
+ if wave.shape[-1] == 2:
143
+ wave = wave[:, 0].squeeze()
144
+ if sr != 24000:
145
+ wave = librosa.resample(wave, orig_sr=sr, target_sr=24000)
146
+ print(wave_path, sr)
147
+
148
+ wave = np.concatenate([np.zeros([5000]), wave, np.zeros([5000])], axis=0)
149
+
150
+ text = self.text_cleaner(text)
151
+
152
+ text.insert(0, 0)
153
+ text.append(0)
154
+
155
+ text = torch.LongTensor(text)
156
+
157
+ return wave, text, speaker_id
158
+
159
+ def _load_data(self, data):
160
+ wave, text_tensor, speaker_id = self._load_tensor(data)
161
+ mel_tensor = preprocess(wave).squeeze()
162
+
163
+ mel_length = mel_tensor.size(1)
164
+ if mel_length > self.max_mel_length:
165
+ random_start = np.random.randint(0, mel_length - self.max_mel_length)
166
+ mel_tensor = mel_tensor[:, random_start:random_start + self.max_mel_length]
167
+
168
+ return mel_tensor, speaker_id
169
+
170
+
171
+ class Collater(object):
172
+ """
173
+ Args:
174
+ adaptive_batch_size (bool): if true, decrease batch size when long data comes.
175
+ """
176
+
177
+ def __init__(self, return_wave=False):
178
+ self.text_pad_index = 0
179
+ self.min_mel_length = 192
180
+ self.max_mel_length = 192
181
+ self.return_wave = return_wave
182
+
183
+
184
+ def __call__(self, batch):
185
+ # batch[0] = wave, mel, text, f0, speakerid
186
+ batch_size = len(batch)
187
+
188
+ # sort by mel length
189
+ lengths = [b[1].shape[1] for b in batch]
190
+ batch_indexes = np.argsort(lengths)[::-1]
191
+ batch = [batch[bid] for bid in batch_indexes]
192
+
193
+ nmels = batch[0][1].size(0)
194
+ max_mel_length = max([b[1].shape[1] for b in batch])
195
+ max_text_length = max([b[2].shape[0] for b in batch])
196
+ max_rtext_length = max([b[3].shape[0] for b in batch])
197
+
198
+ labels = torch.zeros((batch_size)).long()
199
+ mels = torch.zeros((batch_size, nmels, max_mel_length)).float()
200
+ texts = torch.zeros((batch_size, max_text_length)).long()
201
+ ref_texts = torch.zeros((batch_size, max_rtext_length)).long()
202
+
203
+ input_lengths = torch.zeros(batch_size).long()
204
+ ref_lengths = torch.zeros(batch_size).long()
205
+ output_lengths = torch.zeros(batch_size).long()
206
+ ref_mels = torch.zeros((batch_size, nmels, self.max_mel_length)).float()
207
+ ref_labels = torch.zeros((batch_size)).long()
208
+ paths = ['' for _ in range(batch_size)]
209
+ waves = [None for _ in range(batch_size)]
210
+
211
+ for bid, (label, mel, text, ref_text, ref_mel, ref_label, path, wave) in enumerate(batch):
212
+ mel_size = mel.size(1)
213
+ text_size = text.size(0)
214
+ rtext_size = ref_text.size(0)
215
+ labels[bid] = label
216
+ mels[bid, :, :mel_size] = mel
217
+ texts[bid, :text_size] = text
218
+ ref_texts[bid, :rtext_size] = ref_text
219
+ input_lengths[bid] = text_size
220
+ ref_lengths[bid] = rtext_size
221
+ output_lengths[bid] = mel_size
222
+ paths[bid] = path
223
+ ref_mel_size = ref_mel.size(1)
224
+ ref_mels[bid, :, :ref_mel_size] = ref_mel
225
+
226
+ ref_labels[bid] = ref_label
227
+ waves[bid] = wave
228
+
229
+ return waves, texts, input_lengths, ref_texts, ref_lengths, mels, output_lengths, ref_mels
230
+
231
+
232
+
233
+ def build_dataloader(path_list,
234
+ root_path,
235
+ validation=False,
236
+ OOD_data="Data/OOD_texts.txt",
237
+ min_length=50,
238
+ batch_size=4,
239
+ num_workers=1,
240
+ device='cpu',
241
+ collate_config={},
242
+ dataset_config={}):
243
+
244
+ dataset = FilePathDataset(path_list, root_path, OOD_data=OOD_data, min_length=min_length, validation=validation, **dataset_config)
245
+ collate_fn = Collater(**collate_config)
246
+ data_loader = DataLoader(dataset,
247
+ batch_size=batch_size,
248
+ shuffle=(not validation),
249
+ num_workers=num_workers,
250
+ drop_last=(not validation),
251
+ collate_fn=collate_fn,
252
+ pin_memory=(device != 'cpu'))
253
+
254
+ return data_loader
255
+
styletts2/models.py ADDED
@@ -0,0 +1,713 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #coding:utf-8
2
+
3
+ import os
4
+ import os.path as osp
5
+
6
+ import copy
7
+ import math
8
+
9
+ import numpy as np
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
14
+
15
+ from .Utils.ASR.models import ASRCNN
16
+ from .Utils.JDC.model import JDCNet
17
+
18
+ from .Modules.diffusion.sampler import KDiffusion, LogNormalDistribution
19
+ from .Modules.diffusion.modules import Transformer1d, StyleTransformer1d
20
+ from .Modules.diffusion.diffusion import AudioDiffusionConditional
21
+
22
+ from .Modules.discriminators import MultiPeriodDiscriminator, MultiResSpecDiscriminator, WavLMDiscriminator
23
+
24
+ from munch import Munch
25
+ import yaml
26
+
27
+ class LearnedDownSample(nn.Module):
28
+ def __init__(self, layer_type, dim_in):
29
+ super().__init__()
30
+ self.layer_type = layer_type
31
+
32
+ if self.layer_type == 'none':
33
+ self.conv = nn.Identity()
34
+ elif self.layer_type == 'timepreserve':
35
+ self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0)))
36
+ elif self.layer_type == 'half':
37
+ self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1))
38
+ else:
39
+ raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
40
+
41
+ def forward(self, x):
42
+ return self.conv(x)
43
+
44
+ class LearnedUpSample(nn.Module):
45
+ def __init__(self, layer_type, dim_in):
46
+ super().__init__()
47
+ self.layer_type = layer_type
48
+
49
+ if self.layer_type == 'none':
50
+ self.conv = nn.Identity()
51
+ elif self.layer_type == 'timepreserve':
52
+ self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, output_padding=(1, 0), padding=(1, 0))
53
+ elif self.layer_type == 'half':
54
+ self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, output_padding=1, padding=1)
55
+ else:
56
+ raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
57
+
58
+
59
+ def forward(self, x):
60
+ return self.conv(x)
61
+
62
+ class DownSample(nn.Module):
63
+ def __init__(self, layer_type):
64
+ super().__init__()
65
+ self.layer_type = layer_type
66
+
67
+ def forward(self, x):
68
+ if self.layer_type == 'none':
69
+ return x
70
+ elif self.layer_type == 'timepreserve':
71
+ return F.avg_pool2d(x, (2, 1))
72
+ elif self.layer_type == 'half':
73
+ if x.shape[-1] % 2 != 0:
74
+ x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
75
+ return F.avg_pool2d(x, 2)
76
+ else:
77
+ raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
78
+
79
+
80
+ class UpSample(nn.Module):
81
+ def __init__(self, layer_type):
82
+ super().__init__()
83
+ self.layer_type = layer_type
84
+
85
+ def forward(self, x):
86
+ if self.layer_type == 'none':
87
+ return x
88
+ elif self.layer_type == 'timepreserve':
89
+ return F.interpolate(x, scale_factor=(2, 1), mode='nearest')
90
+ elif self.layer_type == 'half':
91
+ return F.interpolate(x, scale_factor=2, mode='nearest')
92
+ else:
93
+ raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
94
+
95
+
96
+ class ResBlk(nn.Module):
97
+ def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
98
+ normalize=False, downsample='none'):
99
+ super().__init__()
100
+ self.actv = actv
101
+ self.normalize = normalize
102
+ self.downsample = DownSample(downsample)
103
+ self.downsample_res = LearnedDownSample(downsample, dim_in)
104
+ self.learned_sc = dim_in != dim_out
105
+ self._build_weights(dim_in, dim_out)
106
+
107
+ def _build_weights(self, dim_in, dim_out):
108
+ self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1))
109
+ self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1))
110
+ if self.normalize:
111
+ self.norm1 = nn.InstanceNorm2d(dim_in, affine=True)
112
+ self.norm2 = nn.InstanceNorm2d(dim_in, affine=True)
113
+ if self.learned_sc:
114
+ self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False))
115
+
116
+ def _shortcut(self, x):
117
+ if self.learned_sc:
118
+ x = self.conv1x1(x)
119
+ if self.downsample:
120
+ x = self.downsample(x)
121
+ return x
122
+
123
+ def _residual(self, x):
124
+ if self.normalize:
125
+ x = self.norm1(x)
126
+ x = self.actv(x)
127
+ x = self.conv1(x)
128
+ x = self.downsample_res(x)
129
+ if self.normalize:
130
+ x = self.norm2(x)
131
+ x = self.actv(x)
132
+ x = self.conv2(x)
133
+ return x
134
+
135
+ def forward(self, x):
136
+ x = self._shortcut(x) + self._residual(x)
137
+ return x / math.sqrt(2) # unit variance
138
+
139
+ class StyleEncoder(nn.Module):
140
+ def __init__(self, dim_in=48, style_dim=48, max_conv_dim=384):
141
+ super().__init__()
142
+ blocks = []
143
+ blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))]
144
+
145
+ repeat_num = 4
146
+ for _ in range(repeat_num):
147
+ dim_out = min(dim_in*2, max_conv_dim)
148
+ blocks += [ResBlk(dim_in, dim_out, downsample='half')]
149
+ dim_in = dim_out
150
+
151
+ blocks += [nn.LeakyReLU(0.2)]
152
+ blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))]
153
+ blocks += [nn.AdaptiveAvgPool2d(1)]
154
+ blocks += [nn.LeakyReLU(0.2)]
155
+ self.shared = nn.Sequential(*blocks)
156
+
157
+ self.unshared = nn.Linear(dim_out, style_dim)
158
+
159
+ def forward(self, x):
160
+ h = self.shared(x)
161
+ h = h.view(h.size(0), -1)
162
+ s = self.unshared(h)
163
+
164
+ return s
165
+
166
+ class LinearNorm(torch.nn.Module):
167
+ def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
168
+ super(LinearNorm, self).__init__()
169
+ self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
170
+
171
+ torch.nn.init.xavier_uniform_(
172
+ self.linear_layer.weight,
173
+ gain=torch.nn.init.calculate_gain(w_init_gain))
174
+
175
+ def forward(self, x):
176
+ return self.linear_layer(x)
177
+
178
+ class Discriminator2d(nn.Module):
179
+ def __init__(self, dim_in=48, num_domains=1, max_conv_dim=384, repeat_num=4):
180
+ super().__init__()
181
+ blocks = []
182
+ blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))]
183
+
184
+ for lid in range(repeat_num):
185
+ dim_out = min(dim_in*2, max_conv_dim)
186
+ blocks += [ResBlk(dim_in, dim_out, downsample='half')]
187
+ dim_in = dim_out
188
+
189
+ blocks += [nn.LeakyReLU(0.2)]
190
+ blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))]
191
+ blocks += [nn.LeakyReLU(0.2)]
192
+ blocks += [nn.AdaptiveAvgPool2d(1)]
193
+ blocks += [spectral_norm(nn.Conv2d(dim_out, num_domains, 1, 1, 0))]
194
+ self.main = nn.Sequential(*blocks)
195
+
196
+ def get_feature(self, x):
197
+ features = []
198
+ for l in self.main:
199
+ x = l(x)
200
+ features.append(x)
201
+ out = features[-1]
202
+ out = out.view(out.size(0), -1) # (batch, num_domains)
203
+ return out, features
204
+
205
+ def forward(self, x):
206
+ out, features = self.get_feature(x)
207
+ out = out.squeeze() # (batch)
208
+ return out, features
209
+
210
+ class ResBlk1d(nn.Module):
211
+ def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
212
+ normalize=False, downsample='none', dropout_p=0.2):
213
+ super().__init__()
214
+ self.actv = actv
215
+ self.normalize = normalize
216
+ self.downsample_type = downsample
217
+ self.learned_sc = dim_in != dim_out
218
+ self._build_weights(dim_in, dim_out)
219
+ self.dropout_p = dropout_p
220
+
221
+ if self.downsample_type == 'none':
222
+ self.pool = nn.Identity()
223
+ else:
224
+ self.pool = weight_norm(nn.Conv1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1))
225
+
226
+ def _build_weights(self, dim_in, dim_out):
227
+ self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1))
228
+ self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
229
+ if self.normalize:
230
+ self.norm1 = nn.InstanceNorm1d(dim_in, affine=True)
231
+ self.norm2 = nn.InstanceNorm1d(dim_in, affine=True)
232
+ if self.learned_sc:
233
+ self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
234
+
235
+ def downsample(self, x):
236
+ if self.downsample_type == 'none':
237
+ return x
238
+ else:
239
+ if x.shape[-1] % 2 != 0:
240
+ x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
241
+ return F.avg_pool1d(x, 2)
242
+
243
+ def _shortcut(self, x):
244
+ if self.learned_sc:
245
+ x = self.conv1x1(x)
246
+ x = self.downsample(x)
247
+ return x
248
+
249
+ def _residual(self, x):
250
+ if self.normalize:
251
+ x = self.norm1(x)
252
+ x = self.actv(x)
253
+ x = F.dropout(x, p=self.dropout_p, training=self.training)
254
+
255
+ x = self.conv1(x)
256
+ x = self.pool(x)
257
+ if self.normalize:
258
+ x = self.norm2(x)
259
+
260
+ x = self.actv(x)
261
+ x = F.dropout(x, p=self.dropout_p, training=self.training)
262
+
263
+ x = self.conv2(x)
264
+ return x
265
+
266
+ def forward(self, x):
267
+ x = self._shortcut(x) + self._residual(x)
268
+ return x / math.sqrt(2) # unit variance
269
+
270
+ class LayerNorm(nn.Module):
271
+ def __init__(self, channels, eps=1e-5):
272
+ super().__init__()
273
+ self.channels = channels
274
+ self.eps = eps
275
+
276
+ self.gamma = nn.Parameter(torch.ones(channels))
277
+ self.beta = nn.Parameter(torch.zeros(channels))
278
+
279
+ def forward(self, x):
280
+ x = x.transpose(1, -1)
281
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
282
+ return x.transpose(1, -1)
283
+
284
+ class TextEncoder(nn.Module):
285
+ def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
286
+ super().__init__()
287
+ self.embedding = nn.Embedding(n_symbols, channels)
288
+
289
+ padding = (kernel_size - 1) // 2
290
+ self.cnn = nn.ModuleList()
291
+ for _ in range(depth):
292
+ self.cnn.append(nn.Sequential(
293
+ weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
294
+ LayerNorm(channels),
295
+ actv,
296
+ nn.Dropout(0.2),
297
+ ))
298
+ # self.cnn = nn.Sequential(*self.cnn)
299
+
300
+ self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
301
+
302
+ def forward(self, x, input_lengths, m):
303
+ x = self.embedding(x) # [B, T, emb]
304
+ x = x.transpose(1, 2) # [B, emb, T]
305
+ m = m.to(input_lengths.device).unsqueeze(1)
306
+ x.masked_fill_(m, 0.0)
307
+
308
+ for c in self.cnn:
309
+ x = c(x)
310
+ x.masked_fill_(m, 0.0)
311
+
312
+ x = x.transpose(1, 2) # [B, T, chn]
313
+
314
+ input_lengths = input_lengths.cpu().numpy()
315
+ x = nn.utils.rnn.pack_padded_sequence(
316
+ x, input_lengths, batch_first=True, enforce_sorted=False)
317
+
318
+ self.lstm.flatten_parameters()
319
+ x, _ = self.lstm(x)
320
+ x, _ = nn.utils.rnn.pad_packed_sequence(
321
+ x, batch_first=True)
322
+
323
+ x = x.transpose(-1, -2)
324
+ x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
325
+
326
+ x_pad[:, :, :x.shape[-1]] = x
327
+ x = x_pad.to(x.device)
328
+
329
+ x.masked_fill_(m, 0.0)
330
+
331
+ return x
332
+
333
+ def inference(self, x):
334
+ x = self.embedding(x)
335
+ x = x.transpose(1, 2)
336
+ x = self.cnn(x)
337
+ x = x.transpose(1, 2)
338
+ self.lstm.flatten_parameters()
339
+ x, _ = self.lstm(x)
340
+ return x
341
+
342
+ def length_to_mask(self, lengths):
343
+ mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
344
+ mask = torch.gt(mask+1, lengths.unsqueeze(1))
345
+ return mask
346
+
347
+
348
+
349
+ class AdaIN1d(nn.Module):
350
+ def __init__(self, style_dim, num_features):
351
+ super().__init__()
352
+ self.norm = nn.InstanceNorm1d(num_features, affine=False)
353
+ self.fc = nn.Linear(style_dim, num_features*2)
354
+
355
+ def forward(self, x, s):
356
+ h = self.fc(s)
357
+ h = h.view(h.size(0), h.size(1), 1)
358
+ gamma, beta = torch.chunk(h, chunks=2, dim=1)
359
+ return (1 + gamma) * self.norm(x) + beta
360
+
361
+ class UpSample1d(nn.Module):
362
+ def __init__(self, layer_type):
363
+ super().__init__()
364
+ self.layer_type = layer_type
365
+
366
+ def forward(self, x):
367
+ if self.layer_type == 'none':
368
+ return x
369
+ else:
370
+ return F.interpolate(x, scale_factor=2, mode='nearest')
371
+
372
+ class AdainResBlk1d(nn.Module):
373
+ def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
374
+ upsample='none', dropout_p=0.0):
375
+ super().__init__()
376
+ self.actv = actv
377
+ self.upsample_type = upsample
378
+ self.upsample = UpSample1d(upsample)
379
+ self.learned_sc = dim_in != dim_out
380
+ self._build_weights(dim_in, dim_out, style_dim)
381
+ self.dropout = nn.Dropout(dropout_p)
382
+
383
+ if upsample == 'none':
384
+ self.pool = nn.Identity()
385
+ else:
386
+ self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
387
+
388
+
389
+ def _build_weights(self, dim_in, dim_out, style_dim):
390
+ self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
391
+ self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
392
+ self.norm1 = AdaIN1d(style_dim, dim_in)
393
+ self.norm2 = AdaIN1d(style_dim, dim_out)
394
+ if self.learned_sc:
395
+ self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
396
+
397
+ def _shortcut(self, x):
398
+ x = self.upsample(x)
399
+ if self.learned_sc:
400
+ x = self.conv1x1(x)
401
+ return x
402
+
403
+ def _residual(self, x, s):
404
+ x = self.norm1(x, s)
405
+ x = self.actv(x)
406
+ x = self.pool(x)
407
+ x = self.conv1(self.dropout(x))
408
+ x = self.norm2(x, s)
409
+ x = self.actv(x)
410
+ x = self.conv2(self.dropout(x))
411
+ return x
412
+
413
+ def forward(self, x, s):
414
+ out = self._residual(x, s)
415
+ out = (out + self._shortcut(x)) / math.sqrt(2)
416
+ return out
417
+
418
+ class AdaLayerNorm(nn.Module):
419
+ def __init__(self, style_dim, channels, eps=1e-5):
420
+ super().__init__()
421
+ self.channels = channels
422
+ self.eps = eps
423
+
424
+ self.fc = nn.Linear(style_dim, channels*2)
425
+
426
+ def forward(self, x, s):
427
+ x = x.transpose(-1, -2)
428
+ x = x.transpose(1, -1)
429
+
430
+ h = self.fc(s)
431
+ h = h.view(h.size(0), h.size(1), 1)
432
+ gamma, beta = torch.chunk(h, chunks=2, dim=1)
433
+ gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
434
+
435
+
436
+ x = F.layer_norm(x, (self.channels,), eps=self.eps)
437
+ x = (1 + gamma) * x + beta
438
+ return x.transpose(1, -1).transpose(-1, -2)
439
+
440
+ class ProsodyPredictor(nn.Module):
441
+
442
+ def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
443
+ super().__init__()
444
+
445
+ self.text_encoder = DurationEncoder(sty_dim=style_dim,
446
+ d_model=d_hid,
447
+ nlayers=nlayers,
448
+ dropout=dropout)
449
+
450
+ self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
451
+ self.duration_proj = LinearNorm(d_hid, max_dur)
452
+
453
+ self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
454
+ self.F0 = nn.ModuleList()
455
+ self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
456
+ self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
457
+ self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
458
+
459
+ self.N = nn.ModuleList()
460
+ self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
461
+ self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
462
+ self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
463
+
464
+ self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
465
+ self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
466
+
467
+
468
+ def forward(self, texts, style, text_lengths, alignment, m):
469
+ d = self.text_encoder(texts, style, text_lengths, m)
470
+
471
+ batch_size = d.shape[0]
472
+ text_size = d.shape[1]
473
+
474
+ # predict duration
475
+ input_lengths = text_lengths.cpu().numpy()
476
+ x = nn.utils.rnn.pack_padded_sequence(
477
+ d, input_lengths, batch_first=True, enforce_sorted=False)
478
+
479
+ m = m.to(text_lengths.device).unsqueeze(1)
480
+
481
+ self.lstm.flatten_parameters()
482
+ x, _ = self.lstm(x)
483
+ x, _ = nn.utils.rnn.pad_packed_sequence(
484
+ x, batch_first=True)
485
+
486
+ x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]])
487
+
488
+ x_pad[:, :x.shape[1], :] = x
489
+ x = x_pad.to(x.device)
490
+
491
+ duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training))
492
+
493
+ en = (d.transpose(-1, -2) @ alignment)
494
+
495
+ return duration.squeeze(-1), en
496
+
497
+ def F0Ntrain(self, x, s):
498
+ x, _ = self.shared(x.transpose(-1, -2))
499
+
500
+ F0 = x.transpose(-1, -2)
501
+ for block in self.F0:
502
+ F0 = block(F0, s)
503
+ F0 = self.F0_proj(F0)
504
+
505
+ N = x.transpose(-1, -2)
506
+ for block in self.N:
507
+ N = block(N, s)
508
+ N = self.N_proj(N)
509
+
510
+ return F0.squeeze(1), N.squeeze(1)
511
+
512
+ def length_to_mask(self, lengths):
513
+ mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
514
+ mask = torch.gt(mask+1, lengths.unsqueeze(1))
515
+ return mask
516
+
517
+ class DurationEncoder(nn.Module):
518
+
519
+ def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
520
+ super().__init__()
521
+ self.lstms = nn.ModuleList()
522
+ for _ in range(nlayers):
523
+ self.lstms.append(nn.LSTM(d_model + sty_dim,
524
+ d_model // 2,
525
+ num_layers=1,
526
+ batch_first=True,
527
+ bidirectional=True,
528
+ dropout=dropout))
529
+ self.lstms.append(AdaLayerNorm(sty_dim, d_model))
530
+
531
+
532
+ self.dropout = dropout
533
+ self.d_model = d_model
534
+ self.sty_dim = sty_dim
535
+
536
+ def forward(self, x, style, text_lengths, m):
537
+ masks = m.to(text_lengths.device)
538
+
539
+ x = x.permute(2, 0, 1)
540
+ s = style.expand(x.shape[0], x.shape[1], -1)
541
+ x = torch.cat([x, s], axis=-1)
542
+ x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
543
+
544
+ x = x.transpose(0, 1)
545
+ input_lengths = text_lengths.cpu().numpy()
546
+ x = x.transpose(-1, -2)
547
+
548
+ for block in self.lstms:
549
+ if isinstance(block, AdaLayerNorm):
550
+ x = block(x.transpose(-1, -2), style).transpose(-1, -2)
551
+ x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
552
+ x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
553
+ else:
554
+ x = x.transpose(-1, -2)
555
+ x = nn.utils.rnn.pack_padded_sequence(
556
+ x, input_lengths, batch_first=True, enforce_sorted=False)
557
+ block.flatten_parameters()
558
+ x, _ = block(x)
559
+ x, _ = nn.utils.rnn.pad_packed_sequence(
560
+ x, batch_first=True)
561
+ x = F.dropout(x, p=self.dropout, training=self.training)
562
+ x = x.transpose(-1, -2)
563
+
564
+ x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
565
+
566
+ x_pad[:, :, :x.shape[-1]] = x
567
+ x = x_pad.to(x.device)
568
+
569
+ return x.transpose(-1, -2)
570
+
571
+ def inference(self, x, style):
572
+ x = self.embedding(x.transpose(-1, -2)) * math.sqrt(self.d_model)
573
+ style = style.expand(x.shape[0], x.shape[1], -1)
574
+ x = torch.cat([x, style], axis=-1)
575
+ src = self.pos_encoder(x)
576
+ output = self.transformer_encoder(src).transpose(0, 1)
577
+ return output
578
+
579
+ def length_to_mask(self, lengths):
580
+ mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
581
+ mask = torch.gt(mask+1, lengths.unsqueeze(1))
582
+ return mask
583
+
584
+ def load_F0_models(path):
585
+ # load F0 model
586
+
587
+ F0_model = JDCNet(num_class=1, seq_len=192)
588
+ params = torch.load(path, map_location='cpu')['net']
589
+ F0_model.load_state_dict(params)
590
+ _ = F0_model.train()
591
+
592
+ return F0_model
593
+
594
+ def load_ASR_models(ASR_MODEL_PATH, ASR_MODEL_CONFIG):
595
+ # load ASR model
596
+ def _load_config(path):
597
+ with open(path) as f:
598
+ config = yaml.safe_load(f)
599
+ model_config = config['model_params']
600
+ return model_config
601
+
602
+ def _load_model(model_config, model_path):
603
+ model = ASRCNN(**model_config)
604
+ params = torch.load(model_path, map_location='cpu')['model']
605
+ model.load_state_dict(params)
606
+ return model
607
+
608
+ asr_model_config = _load_config(ASR_MODEL_CONFIG)
609
+ asr_model = _load_model(asr_model_config, ASR_MODEL_PATH)
610
+ _ = asr_model.train()
611
+
612
+ return asr_model
613
+
614
+ def build_model(args, text_aligner, pitch_extractor, bert):
615
+ assert args.decoder.type in ['istftnet', 'hifigan'], 'Decoder type unknown'
616
+
617
+ if args.decoder.type == "istftnet":
618
+ from .Modules.istftnet import Decoder
619
+ decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
620
+ resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
621
+ upsample_rates = args.decoder.upsample_rates,
622
+ upsample_initial_channel=args.decoder.upsample_initial_channel,
623
+ resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
624
+ upsample_kernel_sizes=args.decoder.upsample_kernel_sizes,
625
+ gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size)
626
+ else:
627
+ from .Modules.hifigan import Decoder
628
+ decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
629
+ resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
630
+ upsample_rates = args.decoder.upsample_rates,
631
+ upsample_initial_channel=args.decoder.upsample_initial_channel,
632
+ resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
633
+ upsample_kernel_sizes=args.decoder.upsample_kernel_sizes)
634
+
635
+ text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
636
+
637
+ predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
638
+
639
+ style_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # acoustic style encoder
640
+ predictor_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # prosodic style encoder
641
+
642
+ # define diffusion model
643
+ if args.multispeaker:
644
+ transformer = StyleTransformer1d(channels=args.style_dim*2,
645
+ context_embedding_features=bert.config.hidden_size,
646
+ context_features=args.style_dim*2,
647
+ **args.diffusion.transformer)
648
+ else:
649
+ transformer = Transformer1d(channels=args.style_dim*2,
650
+ context_embedding_features=bert.config.hidden_size,
651
+ **args.diffusion.transformer)
652
+
653
+ diffusion = AudioDiffusionConditional(
654
+ in_channels=1,
655
+ embedding_max_length=bert.config.max_position_embeddings,
656
+ embedding_features=bert.config.hidden_size,
657
+ embedding_mask_proba=args.diffusion.embedding_mask_proba, # Conditional dropout of batch elements,
658
+ channels=args.style_dim*2,
659
+ context_features=args.style_dim*2,
660
+ )
661
+
662
+ diffusion.diffusion = KDiffusion(
663
+ net=diffusion.unet,
664
+ sigma_distribution=LogNormalDistribution(mean = args.diffusion.dist.mean, std = args.diffusion.dist.std),
665
+ sigma_data=args.diffusion.dist.sigma_data, # a placeholder, will be changed dynamically when start training diffusion model
666
+ dynamic_threshold=0.0
667
+ )
668
+ diffusion.diffusion.net = transformer
669
+ diffusion.unet = transformer
670
+
671
+
672
+ nets = Munch(
673
+ bert=bert,
674
+ bert_encoder=nn.Linear(bert.config.hidden_size, args.hidden_dim),
675
+
676
+ predictor=predictor,
677
+ decoder=decoder,
678
+ text_encoder=text_encoder,
679
+
680
+ predictor_encoder=predictor_encoder,
681
+ style_encoder=style_encoder,
682
+ diffusion=diffusion,
683
+
684
+ text_aligner = text_aligner,
685
+ pitch_extractor=pitch_extractor,
686
+
687
+ mpd = MultiPeriodDiscriminator(),
688
+ msd = MultiResSpecDiscriminator(),
689
+
690
+ # slm discriminator head
691
+ wd = WavLMDiscriminator(args.slm.hidden, args.slm.nlayers, args.slm.initial_channel),
692
+ )
693
+
694
+ return nets
695
+
696
+ def load_checkpoint(model, optimizer, path, load_only_params=True, ignore_modules=[]):
697
+ state = torch.load(path, map_location='cpu')
698
+ params = state['net']
699
+ for key in model:
700
+ if key in params and key not in ignore_modules:
701
+ print('%s loaded' % key)
702
+ model[key].load_state_dict(params[key], strict=False)
703
+ _ = [model[key].eval() for key in model]
704
+
705
+ if not load_only_params:
706
+ epoch = state["epoch"]
707
+ iters = state["iters"]
708
+ optimizer.load_state_dict(state["optimizer"])
709
+ else:
710
+ epoch = 0
711
+ iters = 0
712
+
713
+ return model, optimizer, epoch, iters
styletts2/optimizers.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #coding:utf-8
2
+ import os, sys
3
+ import os.path as osp
4
+ import numpy as np
5
+ import torch
6
+ from torch import nn
7
+ from torch.optim import Optimizer
8
+ from functools import reduce
9
+ from torch.optim import AdamW
10
+
11
+ class MultiOptimizer:
12
+ def __init__(self, optimizers={}, schedulers={}):
13
+ self.optimizers = optimizers
14
+ self.schedulers = schedulers
15
+ self.keys = list(optimizers.keys())
16
+ self.param_groups = reduce(lambda x,y: x+y, [v.param_groups for v in self.optimizers.values()])
17
+
18
+ def state_dict(self):
19
+ state_dicts = [(key, self.optimizers[key].state_dict())\
20
+ for key in self.keys]
21
+ return state_dicts
22
+
23
+ def load_state_dict(self, state_dict):
24
+ for key, val in state_dict:
25
+ try:
26
+ self.optimizers[key].load_state_dict(val)
27
+ except:
28
+ print("Unloaded %s" % key)
29
+
30
+ def step(self, key=None, scaler=None):
31
+ keys = [key] if key is not None else self.keys
32
+ _ = [self._step(key, scaler) for key in keys]
33
+
34
+ def _step(self, key, scaler=None):
35
+ if scaler is not None:
36
+ scaler.step(self.optimizers[key])
37
+ scaler.update()
38
+ else:
39
+ self.optimizers[key].step()
40
+
41
+ def zero_grad(self, key=None):
42
+ if key is not None:
43
+ self.optimizers[key].zero_grad()
44
+ else:
45
+ _ = [self.optimizers[key].zero_grad() for key in self.keys]
46
+
47
+ def scheduler(self, *args, key=None):
48
+ if key is not None:
49
+ self.schedulers[key].step(*args)
50
+ else:
51
+ _ = [self.schedulers[key].step(*args) for key in self.keys]
52
+
53
+ def define_scheduler(optimizer, params):
54
+ scheduler = torch.optim.lr_scheduler.OneCycleLR(
55
+ optimizer,
56
+ max_lr=params.get('max_lr', 2e-4),
57
+ epochs=params.get('epochs', 200),
58
+ steps_per_epoch=params.get('steps_per_epoch', 1000),
59
+ pct_start=params.get('pct_start', 0.0),
60
+ div_factor=1,
61
+ final_div_factor=1)
62
+
63
+ return scheduler
64
+
65
+ def build_optimizer(parameters_dict, scheduler_params_dict, lr):
66
+ optim = dict([(key, AdamW(params, lr=lr, weight_decay=1e-4, betas=(0.0, 0.99), eps=1e-9))
67
+ for key, params in parameters_dict.items()])
68
+
69
+ schedulers = dict([(key, define_scheduler(opt, scheduler_params_dict[key])) \
70
+ for key, opt in optim.items()])
71
+
72
+ multi_optim = MultiOptimizer(optim, schedulers)
73
+ return multi_optim
styletts2/phoneme.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from gruut import sentences
2
+ from collections.abc import Iterable
3
+
4
+
5
+ class PhonemeConverter:
6
+ def phonemize(self, text):
7
+ pass
8
+
9
+
10
+ class GruutPhonemizer(PhonemeConverter):
11
+ def phonemize(self, text, lang='en-us'):
12
+ phonemized = []
13
+ for sent in sentences(text, lang=lang):
14
+ for word in sent:
15
+ if isinstance(word.phonemes, Iterable):
16
+ phonemized.append(''.join(word.phonemes))
17
+ elif isinstance(word.phonemes, str):
18
+ phonemized.append(word.phonemes)
19
+ phonemized_text = ' '.join(phonemized)
20
+ return phonemized_text
21
+
22
+
23
+ # class YourPhonemizer(Phonemizer):
24
+ # def phonemize(self, text):
25
+ # ...
26
+
27
+
28
+ class PhonemeConverterFactory:
29
+ @staticmethod
30
+ def load_phoneme_converter(name: str, **kwargs):
31
+ if name == 'gruut':
32
+ return GruutPhonemizer()
33
+ else:
34
+ raise ValueError("Invalid phoneme converter.")
styletts2/requirements.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ SoundFile
2
+ torchaudio
3
+ munch
4
+ torch
5
+ pydub
6
+ pyyaml
7
+ librosa
8
+ nltk
9
+ matplotlib
10
+ accelerate
11
+ transformers
12
+ einops
13
+ einops-exts
14
+ tqdm
15
+ typing
16
+ typing-extensions
17
+ git+https://github.com/resemble-ai/monotonic_align.git
18
+ gruut>=2.3.4
19
+ gruut-ipa>=0.13.0
20
+ gruut-lang-en>=2.0.0
styletts2/text_utils.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # IPA Phonemizer: https://github.com/bootphon/phonemizer
2
+
3
+ _pad = "$"
4
+ _punctuation = ';:,.!?¡¿—…"«»“” '
5
+ _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
6
+ _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
7
+
8
+ # Export all symbols:
9
+ symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
10
+
11
+ dicts = {}
12
+ for i in range(len((symbols))):
13
+ dicts[symbols[i]] = i
14
+
15
+ class TextCleaner:
16
+ def __init__(self, dummy=None):
17
+ self.word_index_dictionary = dicts
18
+ print(len(dicts))
19
+ def __call__(self, text):
20
+ indexes = []
21
+ for char in text:
22
+ try:
23
+ indexes.append(self.word_index_dictionary[char])
24
+ except KeyError:
25
+ print(text)
26
+ return indexes
styletts2/tts.py ADDED
@@ -0,0 +1,451 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from nltk.tokenize import word_tokenize
2
+ import nltk
3
+ nltk.download('punkt')
4
+
5
+ from pathlib import Path
6
+ import librosa
7
+ import scipy
8
+ import torch
9
+ import torchaudio
10
+ from cached_path import cached_path
11
+ torch.manual_seed(0)
12
+ torch.backends.cudnn.benchmark = False
13
+ torch.backends.cudnn.deterministic = True
14
+
15
+ import random
16
+ random.seed(0)
17
+
18
+ import numpy as np
19
+ np.random.seed(0)
20
+
21
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
22
+ import yaml
23
+
24
+ from . import models
25
+ from . import utils
26
+ from .phoneme import PhonemeConverterFactory
27
+ from .text_utils import TextCleaner
28
+ from .Utils.PLBERT.util import load_plbert
29
+ from .Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
30
+
31
+
32
+ LIBRI_TTS_CHECKPOINT_URL = "https://huggingface.co/yl4579/StyleTTS2-LibriTTS/resolve/main/Models/LibriTTS/epochs_2nd_00020.pth"
33
+ LIBRI_TTS_CONFIG_URL = "https://huggingface.co/yl4579/StyleTTS2-LibriTTS/resolve/main/Models/LibriTTS/config.yml?download=true"
34
+
35
+ ASR_CHECKPOINT_URL = "https://github.com/yl4579/StyleTTS2/raw/main/Utils/ASR/epoch_00080.pth"
36
+ ASR_CONFIG_URL = "https://github.com/yl4579/StyleTTS2/raw/main/Utils/ASR/config.yml"
37
+ F0_CHECKPOINT_URL = "https://github.com/yl4579/StyleTTS2/raw/main/Utils/JDC/bst.t7"
38
+ BERT_CHECKPOINT_URL = "https://github.com/yl4579/StyleTTS2/raw/main/Utils/PLBERT/step_1000000.t7"
39
+ BERT_CONFIG_URL = "https://github.com/yl4579/StyleTTS2/raw/main/Utils/PLBERT/config.yml"
40
+
41
+ DEFAULT_TARGET_VOICE_URL = "https://styletts2.github.io/wavs/LJSpeech/OOD/GT/00001.wav"
42
+
43
+ SINGLE_INFERENCE_MAX_LEN = 420
44
+
45
+ to_mel = torchaudio.transforms.MelSpectrogram(
46
+ n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
47
+ mean, std = -4, 4
48
+
49
+
50
+ def length_to_mask(lengths):
51
+ mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
52
+ mask = torch.gt(mask+1, lengths.unsqueeze(1))
53
+ return mask
54
+
55
+
56
+ def preprocess(wave):
57
+ wave_tensor = torch.from_numpy(wave).float()
58
+ mel_tensor = to_mel(wave_tensor)
59
+ mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
60
+ return mel_tensor
61
+
62
+
63
+ def segment_text(text):
64
+ splitter = RecursiveCharacterTextSplitter(
65
+ separators=["\n\n", "\n", " ", ""],
66
+ chunk_size=SINGLE_INFERENCE_MAX_LEN,
67
+ chunk_overlap=0,
68
+ length_function=len,
69
+ )
70
+ segments = splitter.split_text(text)
71
+ return segments
72
+
73
+
74
+ class StyleTTS2:
75
+ def __init__(self, model_checkpoint_path=None, config_path=None, phoneme_converter='gruut'):
76
+ self.model = None
77
+ self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
78
+ self.phoneme_converter = PhonemeConverterFactory.load_phoneme_converter(phoneme_converter)
79
+ self.config = None
80
+ self.model_params = None
81
+ self.model = self.load_model(model_path=model_checkpoint_path, config_path=config_path)
82
+
83
+ self.sampler = DiffusionSampler(
84
+ self.model.diffusion.diffusion,
85
+ sampler=ADPM2Sampler(),
86
+ sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
87
+ clamp=False
88
+ )
89
+
90
+
91
+ def load_model(self, model_path=None, config_path=None):
92
+ """
93
+ Loads model to prepare for inference. Loads checkpoints from provided paths or from local cache (or downloads
94
+ default checkpoints to local cache if not present).
95
+ :param model_path: Path to LibriTTS StyleTTS2 model checkpoint (TODO: LJSpeech model support)
96
+ :param config_path: Path to LibriTTS StyleTTS2 model config JSON (TODO: LJSpeech model support)
97
+ :return:
98
+ """
99
+
100
+ if not model_path or not Path(model_path).exists():
101
+ print("Invalid or missing model checkpoint path. Loading default model...")
102
+ model_path = cached_path(LIBRI_TTS_CHECKPOINT_URL)
103
+
104
+ if not config_path or not Path(config_path).exists():
105
+ print("Invalid or missing config path. Loading default config...")
106
+ config_path = cached_path(LIBRI_TTS_CONFIG_URL)
107
+
108
+ self.config = yaml.safe_load(open(config_path))
109
+
110
+ # load pretrained ASR model
111
+ ASR_config = self.config.get('ASR_config', False)
112
+ if not ASR_config or not Path(ASR_config).exists():
113
+ print("Invalid ASR config path. Loading default config...")
114
+ ASR_config = cached_path(ASR_CONFIG_URL)
115
+ ASR_path = self.config.get('ASR_path', False)
116
+ if not ASR_path or not Path(ASR_path).exists():
117
+ print("Invalid ASR model checkpoint path. Loading default model...")
118
+ ASR_path = cached_path(ASR_CHECKPOINT_URL)
119
+ text_aligner = models.load_ASR_models(ASR_path, ASR_config)
120
+
121
+ # load pretrained F0 model
122
+ F0_path = self.config.get('F0_path', False)
123
+ if F0_path or not Path(F0_path).exists():
124
+ print("Invalid F0 model path. Loading default model...")
125
+ F0_path = cached_path(F0_CHECKPOINT_URL)
126
+ pitch_extractor = models.load_F0_models(F0_path)
127
+
128
+ # load BERT model
129
+ BERT_dir_path = self.config.get('PLBERT_dir', False) # Directory at BERT_dir_path should contain PLBERT config.yml AND checkpoint
130
+ if not BERT_dir_path or not Path(BERT_dir_path).exists():
131
+ BERT_config_path = cached_path(BERT_CONFIG_URL)
132
+ BERT_checkpoint_path = cached_path(BERT_CHECKPOINT_URL)
133
+ plbert = load_plbert(None, config_path=BERT_config_path, checkpoint_path=BERT_checkpoint_path)
134
+ else:
135
+ plbert = load_plbert(BERT_dir_path)
136
+
137
+ self.model_params = utils.recursive_munch(self.config['model_params'])
138
+ model = models.build_model(self.model_params, text_aligner, pitch_extractor, plbert)
139
+ _ = [model[key].eval() for key in model]
140
+ _ = [model[key].to(self.device) for key in model]
141
+
142
+ params_whole = torch.load(model_path, map_location='cpu')
143
+ params = params_whole['net']
144
+
145
+ for key in model:
146
+ if key in params:
147
+ print('%s loaded' % key)
148
+ try:
149
+ model[key].load_state_dict(params[key])
150
+ except:
151
+ from collections import OrderedDict
152
+ state_dict = params[key]
153
+ new_state_dict = OrderedDict()
154
+ for k, v in state_dict.items():
155
+ name = k[7:] # remove `module.`
156
+ new_state_dict[name] = v
157
+ # load params
158
+ model[key].load_state_dict(new_state_dict, strict=False)
159
+ # except:
160
+ # _load(params[key], model[key])
161
+ _ = [model[key].eval() for key in model]
162
+
163
+ return model
164
+
165
+
166
+ def compute_style(self, path):
167
+ """
168
+ Compute style vector, essentially an embedding that captures the characteristics
169
+ of the target voice that is being cloned
170
+ :param path: Path to target voice audio file
171
+ :return: style vector
172
+ """
173
+ wave, sr = librosa.load(path, sr=24000)
174
+ audio, index = librosa.effects.trim(wave, top_db=30)
175
+ if sr != 24000:
176
+ audio = librosa.resample(audio, sr, 24000)
177
+ mel_tensor = preprocess(audio).to(self.device)
178
+
179
+ with torch.no_grad():
180
+ ref_s = self.model.style_encoder(mel_tensor.unsqueeze(1))
181
+ ref_p = self.model.predictor_encoder(mel_tensor.unsqueeze(1))
182
+
183
+ return torch.cat([ref_s, ref_p], dim=1)
184
+
185
+
186
+ def inference(self,
187
+ text: str,
188
+ target_voice_path=None,
189
+ output_wav_file=None,
190
+ output_sample_rate=24000,
191
+ alpha=0.3,
192
+ beta=0.7,
193
+ diffusion_steps=5,
194
+ embedding_scale=1,
195
+ ref_s=None):
196
+ """
197
+ Text-to-speech function
198
+ :param text: Input text to turn into speech.
199
+ :param target_voice_path: Path to audio file of target voice to clone.
200
+ :param output_wav_file: Name of output audio file (if output WAV file is desired).
201
+ :param output_sample_rate: Output sample rate (default 24000).
202
+ :param alpha: Determines timbre of speech, higher means style is more suitable to text than to the target voice.
203
+ :param beta: Determines prosody of speech, higher means style is more suitable to text than to the target voice.
204
+ :param diffusion_steps: The more the steps, the more diverse the samples are, with the cost of speed.
205
+ :param embedding_scale: Higher scale means style is more conditional to the input text and hence more emotional.
206
+ :param ref_s: Pre-computed style vector to pass directly.
207
+ :return: audio data as a Numpy array (will also create the WAV file if output_wav_file was set).
208
+ """
209
+
210
+ # BERT model is limited by a tensor size [1, 512] during its inference, which roughly corresponds to ~450 characters
211
+ if len(text) > SINGLE_INFERENCE_MAX_LEN:
212
+ return self.long_inference(text,
213
+ target_voice_path=target_voice_path,
214
+ output_wav_file=output_wav_file,
215
+ output_sample_rate=output_sample_rate,
216
+ alpha=alpha,
217
+ beta=beta,
218
+ diffusion_steps=diffusion_steps,
219
+ embedding_scale=embedding_scale,
220
+ ref_s=ref_s)
221
+
222
+ if ref_s is None:
223
+ # default to clone https://styletts2.github.io/wavs/LJSpeech/OOD/GT/00001.wav voice from LibriVox (public domain)
224
+ if not target_voice_path or not Path(target_voice_path).exists():
225
+ print("Cloning default target voice...")
226
+ target_voice_path = cached_path(DEFAULT_TARGET_VOICE_URL)
227
+ ref_s = self.compute_style(target_voice_path) # target style vector
228
+
229
+ text = text.strip()
230
+ text = text.replace('"', '')
231
+ phonemized_text = self.phoneme_converter.phonemize(text)
232
+ ps = word_tokenize(phonemized_text)
233
+ phoneme_string = ' '.join(ps)
234
+
235
+ textcleaner = TextCleaner()
236
+ tokens = textcleaner(phoneme_string)
237
+ tokens.insert(0, 0)
238
+ tokens = torch.LongTensor(tokens).to(self.device).unsqueeze(0)
239
+
240
+ with torch.no_grad():
241
+ input_lengths = torch.LongTensor([tokens.shape[-1]]).to(self.device)
242
+ text_mask = length_to_mask(input_lengths).to(self.device)
243
+
244
+ t_en = self.model.text_encoder(tokens, input_lengths, text_mask)
245
+ bert_dur = self.model.bert(tokens, attention_mask=(~text_mask).int())
246
+ d_en = self.model.bert_encoder(bert_dur).transpose(-1, -2)
247
+
248
+ s_pred = self.sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(self.device),
249
+ embedding=bert_dur,
250
+ embedding_scale=embedding_scale,
251
+ features=ref_s, # reference from the same speaker as the embedding
252
+ num_steps=diffusion_steps).squeeze(1)
253
+
254
+ s = s_pred[:, 128:]
255
+ ref = s_pred[:, :128]
256
+
257
+ ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
258
+ s = beta * s + (1 - beta) * ref_s[:, 128:]
259
+
260
+ # duration prediction
261
+ d = self.model.predictor.text_encoder(d_en,
262
+ s, input_lengths, text_mask)
263
+
264
+ x, _ = self.model.predictor.lstm(d)
265
+ duration = self.model.predictor.duration_proj(x)
266
+
267
+ duration = torch.sigmoid(duration).sum(axis=-1)
268
+ pred_dur = torch.round(duration.squeeze()).clamp(min=1)
269
+
270
+ pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
271
+ c_frame = 0
272
+ for i in range(pred_aln_trg.size(0)):
273
+ pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
274
+ c_frame += int(pred_dur[i].data)
275
+
276
+ # encode prosody
277
+ en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(self.device))
278
+ if self.model_params.decoder.type == "hifigan":
279
+ asr_new = torch.zeros_like(en)
280
+ asr_new[:, :, 0] = en[:, :, 0]
281
+ asr_new[:, :, 1:] = en[:, :, 0:-1]
282
+ en = asr_new
283
+
284
+ F0_pred, N_pred = self.model.predictor.F0Ntrain(en, s)
285
+
286
+ asr = (t_en @ pred_aln_trg.unsqueeze(0).to(self.device))
287
+ if self.model_params.decoder.type == "hifigan":
288
+ asr_new = torch.zeros_like(asr)
289
+ asr_new[:, :, 0] = asr[:, :, 0]
290
+ asr_new[:, :, 1:] = asr[:, :, 0:-1]
291
+ asr = asr_new
292
+
293
+ out = self.model.decoder(asr,
294
+ F0_pred, N_pred, ref.squeeze().unsqueeze(0))
295
+
296
+ output = out.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model, need to be fixed later
297
+ if output_wav_file:
298
+ scipy.io.wavfile.write(output_wav_file, rate=output_sample_rate, data=output)
299
+ return output
300
+
301
+ def long_inference(self,
302
+ text: str,
303
+ target_voice_path=None,
304
+ output_wav_file=None,
305
+ output_sample_rate=24000,
306
+ alpha=0.3,
307
+ beta=0.7,
308
+ t=0.7,
309
+ diffusion_steps=5,
310
+ embedding_scale=1,
311
+ ref_s=None):
312
+ """
313
+ Inference for longform text. Used automatically in inference() when needed.
314
+ :param text: Input text to turn into speech.
315
+ :param target_voice_path: Path to audio file of target voice to clone.
316
+ :param output_wav_file: Name of output audio file (if output WAV file is desired).
317
+ :param output_sample_rate: Output sample rate (default 24000).
318
+ :param alpha: Determines timbre of speech, higher means style is more suitable to text than to the target voice.
319
+ :param beta: Determines prosody of speech, higher means style is more suitable to text than to the target voice.
320
+ :param t: Determines consistency of style across inference segments (0 lowest, 1 highest)
321
+ :param diffusion_steps: The more the steps, the more diverse the samples are, with the cost of speed.
322
+ :param embedding_scale: Higher scale means style is more conditional to the input text and hence more emotional.
323
+ :param ref_s: Pre-computed style vector to pass directly.
324
+ :return: concatenated audio data as a Numpy array (will also create the WAV file if output_wav_file was set).
325
+ """
326
+
327
+ if ref_s is None:
328
+ # default to clone https://styletts2.github.io/wavs/LJSpeech/OOD/GT/00001.wav voice from LibriVox (public domain)
329
+ if not target_voice_path or not Path(target_voice_path).exists():
330
+ print("Cloning default target voice...")
331
+ target_voice_path = cached_path(DEFAULT_TARGET_VOICE_URL)
332
+ ref_s = self.compute_style(target_voice_path) # target style vector
333
+
334
+ text_segments = segment_text(text)
335
+ segments = []
336
+ prev_s = None
337
+ for text_segment in text_segments:
338
+ # Address cut-off sentence issue due to langchain text splitter
339
+ if text_segment[-1] != '.':
340
+ text_segment += ', '
341
+ segment_output, prev_s = self.long_inference_segment(text_segment,
342
+ prev_s,
343
+ ref_s,
344
+ alpha=alpha,
345
+ beta=beta,
346
+ t=t,
347
+ diffusion_steps=diffusion_steps,
348
+ embedding_scale=embedding_scale)
349
+ segments.append(segment_output)
350
+ output = np.concatenate(segments)
351
+ if output_wav_file:
352
+ scipy.io.wavfile.write(output_wav_file, rate=output_sample_rate, data=output)
353
+ return output
354
+
355
+ def long_inference_segment(self,
356
+ text,
357
+ prev_s,
358
+ ref_s,
359
+ alpha=0.3,
360
+ beta=0.7,
361
+ t=0.7,
362
+ diffusion_steps=5,
363
+ embedding_scale=1):
364
+ """
365
+ Performs inference for segment of longform text; see long_inference()
366
+ :param text: Input text
367
+ :param prev_s: Style vector of previous speech segment (used to keep voice consistent in longform inference)
368
+ :param ref_s: Pre-computed style vector of target voice to clone
369
+ :param alpha: Determines timbre of speech, higher means style is more suitable to text than to the target voice.
370
+ :param beta: Determines prosody of speech, higher means style is more suitable to text than to the target voice.
371
+ :param t: Determines consistency of style across inference segments (0 lowest, 1 highest)
372
+ :param diffusion_steps: The more the steps, the more diverse the samples are, with the cost of speed.
373
+ :param embedding_scale: Higher scale means style is more conditional to the input text and hence more emotional.
374
+ :return: audio data as a Numpy array
375
+ """
376
+ text = text.strip()
377
+ text = text.replace('"', '')
378
+ phonemized_text = self.phoneme_converter.phonemize(text)
379
+ ps = word_tokenize(phonemized_text)
380
+ phoneme_string = ' '.join(ps)
381
+ phoneme_string = phoneme_string.replace('``', '"')
382
+ phoneme_string = phoneme_string.replace("''", '"')
383
+
384
+ textcleaner = TextCleaner()
385
+ tokens = textcleaner(phoneme_string)
386
+ tokens.insert(0, 0)
387
+ tokens = torch.LongTensor(tokens).to(self.device).unsqueeze(0)
388
+
389
+ with torch.no_grad():
390
+ input_lengths = torch.LongTensor([tokens.shape[-1]]).to(self.device)
391
+ text_mask = length_to_mask(input_lengths).to(self.device)
392
+
393
+ t_en = self.model.text_encoder(tokens, input_lengths, text_mask)
394
+ bert_dur = self.model.bert(tokens, attention_mask=(~text_mask).int())
395
+ d_en = self.model.bert_encoder(bert_dur).transpose(-1, -2)
396
+
397
+ s_pred = self.sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(self.device),
398
+ embedding=bert_dur,
399
+ embedding_scale=embedding_scale,
400
+ features=ref_s, # reference from the same speaker as the embedding
401
+ num_steps=diffusion_steps).squeeze(1)
402
+
403
+ if prev_s is not None:
404
+ # convex combination of previous and current style
405
+ s_pred = t * prev_s + (1 - t) * s_pred
406
+
407
+ s = s_pred[:, 128:]
408
+ ref = s_pred[:, :128]
409
+
410
+ ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
411
+ s = beta * s + (1 - beta) * ref_s[:, 128:]
412
+
413
+ s_pred = torch.cat([ref, s], dim=-1)
414
+
415
+ d = self.model.predictor.text_encoder(d_en,
416
+ s, input_lengths, text_mask)
417
+
418
+ x, _ = self.model.predictor.lstm(d)
419
+ duration = self.model.predictor.duration_proj(x)
420
+
421
+ duration = torch.sigmoid(duration).sum(axis=-1)
422
+ pred_dur = torch.round(duration.squeeze()).clamp(min=1)
423
+
424
+
425
+ pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
426
+ c_frame = 0
427
+ for i in range(pred_aln_trg.size(0)):
428
+ pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
429
+ c_frame += int(pred_dur[i].data)
430
+
431
+ # encode prosody
432
+ en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(self.device))
433
+ if self.model_params.decoder.type == "hifigan":
434
+ asr_new = torch.zeros_like(en)
435
+ asr_new[:, :, 0] = en[:, :, 0]
436
+ asr_new[:, :, 1:] = en[:, :, 0:-1]
437
+ en = asr_new
438
+
439
+ F0_pred, N_pred = self.model.predictor.F0Ntrain(en, s)
440
+
441
+ asr = (t_en @ pred_aln_trg.unsqueeze(0).to(self.device))
442
+ if self.model_params.decoder.type == "hifigan":
443
+ asr_new = torch.zeros_like(asr)
444
+ asr_new[:, :, 0] = asr[:, :, 0]
445
+ asr_new[:, :, 1:] = asr[:, :, 0:-1]
446
+ asr = asr_new
447
+
448
+ out = self.model.decoder(asr,
449
+ F0_pred, N_pred, ref.squeeze().unsqueeze(0))
450
+
451
+ return out.squeeze().cpu().numpy()[..., :-100], s_pred