|
import torch |
|
import numpy as np |
|
import torch.nn.functional as F |
|
|
|
class SLMAdversarialLoss(torch.nn.Module): |
|
|
|
def __init__(self, model, wl, sampler, min_len, max_len, batch_percentage=0.5, skip_update=10, sig=1.5): |
|
super(SLMAdversarialLoss, self).__init__() |
|
self.model = model |
|
self.wl = wl |
|
self.sampler = sampler |
|
|
|
self.min_len = min_len |
|
self.max_len = max_len |
|
self.batch_percentage = batch_percentage |
|
|
|
self.sig = sig |
|
self.skip_update = skip_update |
|
|
|
def forward(self, iters, y_rec_gt, y_rec_gt_pred, waves, mel_input_length, ref_text, ref_lengths, use_ind, s_trg, ref_s=None): |
|
text_mask = length_to_mask(ref_lengths).to(ref_text.device) |
|
bert_dur = self.model.bert(ref_text, attention_mask=(~text_mask).int()) |
|
d_en = self.model.bert_encoder(bert_dur).transpose(-1, -2) |
|
|
|
if use_ind and np.random.rand() < 0.5: |
|
s_preds = s_trg |
|
else: |
|
num_steps = np.random.randint(3, 5) |
|
if ref_s is not None: |
|
s_preds = self.sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(ref_text.device), |
|
embedding=bert_dur, |
|
embedding_scale=1, |
|
features=ref_s, |
|
embedding_mask_proba=0.1, |
|
num_steps=num_steps).squeeze(1) |
|
else: |
|
s_preds = self.sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(ref_text.device), |
|
embedding=bert_dur, |
|
embedding_scale=1, |
|
embedding_mask_proba=0.1, |
|
num_steps=num_steps).squeeze(1) |
|
|
|
s_dur = s_preds[:, 128:] |
|
s = s_preds[:, :128] |
|
|
|
d, _ = self.model.predictor(d_en, s_dur, |
|
ref_lengths, |
|
torch.randn(ref_lengths.shape[0], ref_lengths.max(), 2).to(ref_text.device), |
|
text_mask) |
|
|
|
bib = 0 |
|
|
|
output_lengths = [] |
|
attn_preds = [] |
|
|
|
|
|
for _s2s_pred, _text_length in zip(d, ref_lengths): |
|
|
|
_s2s_pred_org = _s2s_pred[:_text_length, :] |
|
|
|
_s2s_pred = torch.sigmoid(_s2s_pred_org) |
|
_dur_pred = _s2s_pred.sum(axis=-1) |
|
|
|
l = int(torch.round(_s2s_pred.sum()).item()) |
|
t = torch.arange(0, l).expand(l) |
|
|
|
t = torch.arange(0, l).unsqueeze(0).expand((len(_s2s_pred), l)).to(ref_text.device) |
|
loc = torch.cumsum(_dur_pred, dim=0) - _dur_pred / 2 |
|
|
|
h = torch.exp(-0.5 * torch.square(t - (l - loc.unsqueeze(-1))) / (self.sig)**2) |
|
|
|
out = torch.nn.functional.conv1d(_s2s_pred_org.unsqueeze(0), |
|
h.unsqueeze(1), |
|
padding=h.shape[-1] - 1, groups=int(_text_length))[..., :l] |
|
attn_preds.append(F.softmax(out.squeeze(), dim=0)) |
|
|
|
output_lengths.append(l) |
|
|
|
max_len = max(output_lengths) |
|
|
|
with torch.no_grad(): |
|
t_en = self.model.text_encoder(ref_text, ref_lengths, text_mask) |
|
|
|
s2s_attn = torch.zeros(len(ref_lengths), int(ref_lengths.max()), max_len).to(ref_text.device) |
|
for bib in range(len(output_lengths)): |
|
s2s_attn[bib, :ref_lengths[bib], :output_lengths[bib]] = attn_preds[bib] |
|
|
|
asr_pred = t_en @ s2s_attn |
|
|
|
_, p_pred = self.model.predictor(d_en, s_dur, |
|
ref_lengths, |
|
s2s_attn, |
|
text_mask) |
|
|
|
mel_len = max(int(min(output_lengths) / 2 - 1), self.min_len // 2) |
|
mel_len = min(mel_len, self.max_len // 2) |
|
|
|
|
|
|
|
en = [] |
|
p_en = [] |
|
sp = [] |
|
|
|
F0_fakes = [] |
|
N_fakes = [] |
|
|
|
wav = [] |
|
|
|
for bib in range(len(output_lengths)): |
|
mel_length_pred = output_lengths[bib] |
|
mel_length_gt = int(mel_input_length[bib].item() / 2) |
|
if mel_length_gt <= mel_len or mel_length_pred <= mel_len: |
|
continue |
|
|
|
sp.append(s_preds[bib]) |
|
|
|
random_start = np.random.randint(0, mel_length_pred - mel_len) |
|
en.append(asr_pred[bib, :, random_start:random_start+mel_len]) |
|
p_en.append(p_pred[bib, :, random_start:random_start+mel_len]) |
|
|
|
|
|
random_start = np.random.randint(0, mel_length_gt - mel_len) |
|
y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300] |
|
wav.append(torch.from_numpy(y).to(ref_text.device)) |
|
|
|
if len(wav) >= self.batch_percentage * len(waves): |
|
break |
|
|
|
if len(sp) <= 1: |
|
return None |
|
|
|
sp = torch.stack(sp) |
|
wav = torch.stack(wav).float() |
|
en = torch.stack(en) |
|
p_en = torch.stack(p_en) |
|
|
|
F0_fake, N_fake = self.model.predictor.F0Ntrain(p_en, sp[:, 128:]) |
|
y_pred = self.model.decoder(en, F0_fake, N_fake, sp[:, :128]) |
|
|
|
|
|
if (iters + 1) % self.skip_update == 0: |
|
if np.random.randint(0, 2) == 0: |
|
wav = y_rec_gt_pred |
|
use_rec = True |
|
else: |
|
use_rec = False |
|
|
|
crop_size = min(wav.size(-1), y_pred.size(-1)) |
|
if use_rec: |
|
if wav.size(-1) > y_pred.size(-1): |
|
real_GP = wav[:, : , :crop_size] |
|
out_crop = self.wl.discriminator_forward(real_GP.detach().squeeze()) |
|
out_org = self.wl.discriminator_forward(wav.detach().squeeze()) |
|
loss_reg = F.l1_loss(out_crop, out_org[..., :out_crop.size(-1)]) |
|
|
|
if np.random.randint(0, 2) == 0: |
|
d_loss = self.wl.discriminator(real_GP.detach().squeeze(), y_pred.detach().squeeze()).mean() |
|
else: |
|
d_loss = self.wl.discriminator(wav.detach().squeeze(), y_pred.detach().squeeze()).mean() |
|
else: |
|
real_GP = y_pred[:, : , :crop_size] |
|
out_crop = self.wl.discriminator_forward(real_GP.detach().squeeze()) |
|
out_org = self.wl.discriminator_forward(y_pred.detach().squeeze()) |
|
loss_reg = F.l1_loss(out_crop, out_org[..., :out_crop.size(-1)]) |
|
|
|
if np.random.randint(0, 2) == 0: |
|
d_loss = self.wl.discriminator(wav.detach().squeeze(), real_GP.detach().squeeze()).mean() |
|
else: |
|
d_loss = self.wl.discriminator(wav.detach().squeeze(), y_pred.detach().squeeze()).mean() |
|
|
|
|
|
d_loss += loss_reg |
|
|
|
out_gt = self.wl.discriminator_forward(y_rec_gt.detach().squeeze()) |
|
out_rec = self.wl.discriminator_forward(y_rec_gt_pred.detach().squeeze()) |
|
|
|
|
|
d_loss += F.l1_loss(out_gt, out_rec) |
|
|
|
else: |
|
d_loss = self.wl.discriminator(wav.detach().squeeze(), y_pred.detach().squeeze()).mean() |
|
else: |
|
d_loss = 0 |
|
|
|
|
|
gen_loss = self.wl.generator(y_pred.squeeze()) |
|
|
|
gen_loss = gen_loss.mean() |
|
|
|
return d_loss, gen_loss, y_pred.detach().cpu().numpy() |
|
|
|
def length_to_mask(lengths): |
|
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) |
|
mask = torch.gt(mask+1, lengths.unsqueeze(1)) |
|
return mask |
|
|