Spaces:
Sleeping
Sleeping
"""This module contains simple helper functions """ | |
from __future__ import print_function | |
import torch | |
import numpy as np | |
from PIL import Image | |
import os | |
import torchvision | |
import sys | |
import shutil | |
import datetime | |
def check_path_is_static_data(path): | |
last_extension = path.split(".")[-1] | |
acceptable_extensions = ['png', 'jpg', 'jpeg', 'npy', 'npz'] | |
if last_extension.lower() in acceptable_extensions: | |
return True | |
return False | |
def check_path(path): | |
try: | |
if not os.path.exists(path): | |
os.makedirs(path) | |
except OSError as e: | |
print(e) | |
def tensor2file(input_image, file_path, ext_name): | |
"""Convert a tensor into a file. | |
Parameters: | |
input_image -- the input image tensor | |
file_path -- the file path without extension name | |
""" | |
if not isinstance(input_image, np.ndarray): | |
if isinstance(input_image, torch.Tensor): # get the data from a variable | |
image_tensor = input_image.data | |
else: | |
return input_image | |
image_numpy = image_tensor[0].cpu().float().numpy() # convert it into a numpy array | |
if image_numpy.shape[0] == 1: # grayscale to RGB | |
image_numpy = np.tile(image_numpy, (3, 1, 1)) | |
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling | |
else: # if it is a numpy array, do nothing | |
image_numpy = input_image | |
if image_numpy.shape[2] <= 3: | |
image_numpy = image_numpy.astype(np.uint8) | |
# save as image | |
image_pil = Image.fromarray(image_numpy) | |
image_pil.save(file_path + '.' + ext_name) | |
else: | |
# save as numpy | |
np.save(file_path + '.npy', image_numpy) | |
def tensor2im(input_image, imtype=np.uint8): | |
""""Converts a Tensor array into a numpy image array. | |
Parameters: | |
input_image (tensor) -- the input image tensor array | |
imtype (type) -- the desired type of the converted numpy array | |
""" | |
if not isinstance(input_image, np.ndarray): | |
if isinstance(input_image, torch.Tensor): # get the data from a variable | |
image_tensor = input_image.data | |
else: | |
return input_image | |
image_numpy = image_tensor[0].cpu().float().numpy() # convert it into a numpy array | |
if image_numpy.shape[0] == 1: # grayscale to RGB | |
image_numpy = np.tile(image_numpy, (3, 1, 1)) | |
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling | |
if image_numpy.shape[2] > 3: # clip to 3 channel | |
print('Warning: the channel count of output image exceeds 3.') | |
image_numpy = image_numpy[:,:,:3] | |
else: # if it is a numpy array, do nothing | |
image_numpy = input_image | |
return image_numpy.astype(imtype) | |
def diagnose_network(net, name='network'): | |
"""Calculate and print the mean of average absolute(gradients) | |
Parameters: | |
net (torch network) -- Torch network | |
name (str) -- the name of the network | |
""" | |
mean = 0.0 | |
count = 0 | |
for param in net.parameters(): | |
if param.grad is not None: | |
mean += torch.mean(torch.abs(param.grad.data)) | |
count += 1 | |
if count > 0: | |
mean = mean / count | |
print(name) | |
print(mean) | |
def save_image(image_numpy, image_path, aspect_ratio=1.0): | |
"""Save a numpy image to the disk | |
Parameters: | |
image_numpy (numpy array) -- input numpy array | |
image_path (str) -- the path of the image | |
""" | |
image_pil = Image.fromarray(image_numpy) | |
h, w, _ = image_numpy.shape | |
if aspect_ratio > 1.0: | |
image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.BICUBIC) | |
if aspect_ratio < 1.0: | |
image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.BICUBIC) | |
image_pil.save(image_path) | |
def print_numpy(x, val=True, shp=False): | |
"""Print the mean, min, max, median, std, and size of a numpy array | |
Parameters: | |
val (bool) -- if print the values of the numpy array | |
shp (bool) -- if print the shape of the numpy array | |
""" | |
x = x.astype(np.float64) | |
if shp: | |
print('shape,', x.shape) | |
if val: | |
x = x.flatten() | |
print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( | |
np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) | |
def mkdirs(paths): | |
"""create empty directories if they don't exist | |
Parameters: | |
paths (str list) -- a list of directory paths | |
""" | |
if isinstance(paths, list) and not isinstance(paths, str): | |
for path in paths: | |
mkdir(path) | |
else: | |
mkdir(paths) | |
def mkdir(path): | |
"""create a single empty directory if it didn't exist | |
Parameters: | |
path (str) -- a single directory path | |
""" | |
if not os.path.exists(path): | |
os.makedirs(path) | |
def print_losses(epoch, iters, len_dataset, current_losses, average_losses, mode='training'): | |
"""print current losses on console""" | |
if mode=='training': | |
message = mode + ': (epoch: %d, iters: %d / %d) ' % (epoch, iters, len_dataset) | |
else: | |
message = mode + ': (epoch: %d) ' % epoch | |
for k, v in current_losses.items(): | |
message += '%s: %.3f ' % (k, v) | |
for k, v in average_losses.items(): | |
message += 'average %s: %.3f ' % (k, v.avg()) | |
message += datetime.datetime.now().strftime("%Y_%m_%d %H:%M:%S") | |
print(message) # print the message | |
def make_grid(model): | |
""" | |
create an image grid to be visualized by tensorboard. | |
""" | |
visuals = model.get_current_visuals() | |
names, grids = [], [] | |
for name, img in visuals.items(): | |
names.append(name) | |
grid = torchvision.utils.make_grid(img[:,:3,:,:], nrow=img.size()[0], normalize=True) | |
grids.append(grid) | |
return grids, names | |
class AverageMeter: | |
def __init__(self): | |
self.sum = 0 | |
self.num_item = 0 | |
def update(self, value): | |
self.sum += value | |
self.num_item += 1 | |
def avg(self): | |
return self.sum / self.num_item | |
def clear(self): | |
self.sum = 0 | |
self.num_item = 0 | |