MMFS / utils /augmentation.py
limoran
add basic files
7e2a2a5
raw
history blame
24.6 kB
from packaging import version
import random
import numpy as np
from PIL import Image, ImageFilter, ImageOps
from torchvision.transforms.transforms import Lambda, Compose
from torchvision.transforms import functional as F
from collections.abc import Iterable
import torch, torchvision
import numbers
import copy
if version.parse(torchvision.__version__) <= version.parse('0.7.0'):
from torchvision.transforms.transforms import _get_image_size
def check_input_type_perform_action(input, type, action, *args, **kwargs):
output = input
if isinstance(input, list):
for i in range(0, len(input)):
if type is None:
if input[i] is not None: # do not combine with last line, to avoid calling isinstance on None.
output[i] = action(input[i], *args, **kwargs)
elif isinstance(input[i], type):
output[i] = action(input[i], *args, **kwargs)
elif type is None:
if input is not None:
output = action(input, *args, **kwargs)
elif isinstance(input, type):
output = action(input, *args, **kwargs)
return output
"""
Most of these functions are imported from torchvision.transforms.transforms and edited to support 2 or more inputs.
"""
class JointCompose(object):
"""
Composes several transforms together.
"""
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, input1, input2):
for t in self.transforms:
input1, input2 = t(input1, input2)
return input1, input2
class Grayscale(object):
def __init__(self, input1_output_channels=1, input2_output_channels=1):
self.input1_output_channels = input1_output_channels
self.input2_output_channels = input2_output_channels
def __call__(self, input1, input2):
output1 = F.to_grayscale(input1, num_output_channels=self.input1_output_channels) if self.input1_output_channels == 1 else input1
output2 = check_input_type_perform_action(input2, Image.Image, F.to_grayscale, num_output_channels=self.input2_output_channels) \
if self.input2_output_channels == 1 else input2
return output1, output2
class Resize(object):
def __init__(self, size, interpolation=Image.BILINEAR):
assert isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)
self.size = size
self.interpolation = interpolation
def __call__(self, input1, input2):
output1 = F.resize(input1, self.size, self.interpolation)
output2 = check_input_type_perform_action(input2, Image.Image, F.resize, self.size, self.interpolation)
return output1, output2
class ScaleWidth:
def __init__(self, target_size, method=Image.BICUBIC):
self.target_size = target_size
self.method = method
def scalewidth(self, img):
ow, oh = img.size
w = self.target_size
h = int(self.target_size * oh / ow)
img_resized = img.resize((w, h), self.method)
if h > w:
# if resized image's height is larger than its width, crop the center
left = 0
top = h // 2 - self.target_size // 2
right = self.target_size
bottom = top + self.target_size
img_resized = img_resized.crop((left, top, right, bottom))
elif h < w:
# pad the heights
delta_w = self.target_size - w
delta_h = self.target_size - h
padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2))
img_resized = ImageOps.expand(img_resized, padding)
return img_resized
def __call__(self, input1, input2):
output1 = self.scalewidth(input1)
output2 = check_input_type_perform_action(input2, Image.Image, self.scalewidth)
return output1, output2
class RandomCrop(object):
def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant'):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
self.padding = padding
self.pad_if_needed = pad_if_needed
self.fill = fill
self.padding_mode = padding_mode
@staticmethod
def get_params(img, output_size):
if version.parse(torchvision.__version__) <= version.parse('0.7.0'):
w, h = _get_image_size(img)
else:
w, h = F._get_image_size(img)
th, tw = output_size
if w == tw and h == th:
return 0, 0, h, w
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
return i, j, th, tw
def pad(self, img):
if self.padding is not None:
img = F.pad(img, self.padding, self.fill, self.padding_mode)
# pad the width if needed
if self.pad_if_needed and img.size[0] < self.size[1]:
img = F.pad(img, (self.size[1] - img.size[0], 0), self.fill, self.padding_mode)
# pad the height if needed
if self.pad_if_needed and img.size[1] < self.size[0]:
img = F.pad(img, (0, self.size[0] - img.size[1]), self.fill, self.padding_mode)
return img
def get_crop_range(self, img):
return self.get_params(img, self.size)
def pad_and_crop(self, input, i, j, h, w):
return F.crop(self.pad(input), i, j, h, w)
def __call__(self, input1, input2):
output1 = self.pad(input1)
i, j, h, w = self.get_crop_range(output1)
output1 = F.crop(output1, i, j, h, w)
output2 = check_input_type_perform_action(input2, Image.Image, self.pad_and_crop, i, j, h, w)
return output1, output2
class Crop:
def __init__(self, pos, size):
self.pos = pos
self.size = size
def crop(self, img):
ow, oh = img.size
x1, y1 = self.pos
tw = th = self.size
if (ow > tw or oh > th):
return img.crop((x1, y1, x1 + tw, y1 + th))
return img
def __call__(self, input1, input2):
output1 = self.crop(input1)
output2 = check_input_type_perform_action(input2, Image.Image, self.crop)
return output1, output2
class ColorJitter(object):
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
self.brightness = self._check_input(brightness, 'brightness')
self.contrast = self._check_input(contrast, 'contrast')
self.saturation = self._check_input(saturation, 'saturation')
self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
clip_first_on_zero=False)
def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
if isinstance(value, numbers.Number):
if value < 0:
raise ValueError("If {} is a single number, it must be non negative.".format(name))
value = [center - value, center + value]
if clip_first_on_zero:
value[0] = max(value[0], 0)
elif isinstance(value, (tuple, list)) and len(value) == 2:
if not bound[0] <= value[0] <= value[1] <= bound[1]:
raise ValueError("{} values should be between {}".format(name, bound))
else:
raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))
# if value is 0 or (1., 1.) for brightness/contrast/saturation
# or (0., 0.) for hue, do nothing
if value[0] == value[1] == center:
value = None
return value
@staticmethod
def get_params(brightness, contrast, saturation, hue):
transforms = []
if brightness is not None:
brightness_factor = random.uniform(brightness[0], brightness[1])
transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor)))
if contrast is not None:
contrast_factor = random.uniform(contrast[0], contrast[1])
transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))
if saturation is not None:
saturation_factor = random.uniform(saturation[0], saturation[1])
transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor)))
if hue is not None:
hue_factor = random.uniform(hue[0], hue[1])
transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor)))
random.shuffle(transforms)
transform = Compose(transforms)
return transform
def __call__(self, input1, input2):
transform = self.get_params(self.brightness, self.contrast,
self.saturation, self.hue)
output1 = transform(input1)
output2 = check_input_type_perform_action(input2, Image.Image, transform)
return output1, output2
class RandomAffine(object):
def __init__(self, degrees, translate=None, scale=None, shear=None, resample=False, fillcolor=0):
if isinstance(degrees, numbers.Number):
if degrees < 0:
raise ValueError("If degrees is a single number, it must be positive.")
self.degrees = (-degrees, degrees)
else:
assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
"degrees should be a list or tuple and it must be of length 2."
self.degrees = degrees
if translate is not None:
assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
"translate should be a list or tuple and it must be of length 2."
for t in translate:
if not (0.0 <= t <= 1.0):
raise ValueError("translation values should be between 0 and 1")
self.translate = translate
if scale is not None:
assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
"scale should be a list or tuple and it must be of length 2."
for s in scale:
if s <= 0:
raise ValueError("scale values should be positive")
self.scale = scale
if shear is not None:
if isinstance(shear, numbers.Number):
if shear < 0:
raise ValueError("If shear is a single number, it must be positive.")
self.shear = (-shear, shear)
else:
assert isinstance(shear, (tuple, list)) and \
(len(shear) == 2 or len(shear) == 4), \
"shear should be a list or tuple and it must be of length 2 or 4."
# X-Axis shear with [min, max]
if len(shear) == 2:
self.shear = [shear[0], shear[1], 0., 0.]
elif len(shear) == 4:
self.shear = [s for s in shear]
else:
self.shear = shear
self.resample = resample
self.fillcolor = fillcolor
@staticmethod
def get_params(degrees, translate, scale_ranges, shears, img_size):
angle = random.uniform(degrees[0], degrees[1])
if translate is not None:
max_dx = translate[0] * img_size[0]
max_dy = translate[1] * img_size[1]
translations = (np.round(random.uniform(-max_dx, max_dx)),
np.round(random.uniform(-max_dy, max_dy)))
else:
translations = (0, 0)
if scale_ranges is not None:
scale = random.uniform(scale_ranges[0], scale_ranges[1])
else:
scale = 1.0
if shears is not None:
if len(shears) == 2:
shear = [random.uniform(shears[0], shears[1]), 0.]
elif len(shears) == 4:
shear = [random.uniform(shears[0], shears[1]),
random.uniform(shears[2], shears[3])]
else:
shear = 0.0
return angle, translations, scale, shear
def __call__(self, input1, input2):
params = self.get_params(self.degrees, self.translate, self.scale, self.shear, input1.size)
output1 = F.affine(input1, *params, resample=self.resample, fillcolor=self.fillcolor)
output2 = check_input_type_perform_action(input2, Image.Image, F.affine, *params, resample=self.resample, fillcolor=self.fillcolor)
return output1, output2
class RandomRotation(object):
def __init__(self, degrees, resample=False, expand=False, center=None, fill=None):
if isinstance(degrees, numbers.Number):
if degrees < 0:
raise ValueError("If degrees is a single number, it must be positive.")
self.degrees = (-degrees, degrees)
else:
if len(degrees) != 2:
raise ValueError("If degrees is a sequence, it must be of len 2.")
self.degrees = degrees
self.resample = resample
self.expand = expand
self.center = center
self.fill = fill
@staticmethod
def get_params(degrees):
angle = random.uniform(degrees[0], degrees[1])
return angle
def __call__(self, input1, input2):
angle = self.get_params(self.degrees)
output1 = F.rotate(input1, angle, self.resample, self.expand, self.center, self.fill)
output2 = check_input_type_perform_action(input2, Image.Image, F.rotate, angle, self.resample, self.expand, self.center, self.fill)
return output1, output2
class RandomBlur:
def __init__(self, blur_chance):
self.blur_chance = blur_chance
def get_params(self):
if self.blur_chance > random.random():
kernel = random.randint(3, 12)
while kernel % 2 != 1:
kernel = random.randint(3, 12)
else:
kernel = None
return kernel
def blur(self, image, kernel):
image = image.filter(ImageFilter.GaussianBlur(radius=kernel))
return image
def __call__(self, input1, input2):
kernel = self.get_params()
if kernel is None:
return input1, input2
else:
output1 = self.blur(input1, kernel)
output2 = check_input_type_perform_action(input2, Image.Image, self.blur, kernel)
return output1, output2
class NoiseTransform:
"""code is partly from http://www.xiaoliangbai.com/2016/09/09/more-on-image-noise-generation and edited by Oliver."""
def __init__(self, noise_type):
self.noise_type = noise_type
def get_params(self, image):
params = []
image_np = np.array(image)
row, col, ch = image_np.shape
if random.random() < 0.5:
return None
if self.noise_type == "gauss":
mean = 0.0
std = random.uniform(0.001, 0.3)
gauss = np.random.normal(mean, std, (row, col, ch))
gauss = gauss.reshape(row, col, ch)
params.append(gauss)
return params
elif self.noise_type == "s&p":
s_vs_p = 0.5
amount = random.uniform(0.001, 0.01)
# Generate Salt '1' noise
num_salt = np.ceil(amount * image_np.size * s_vs_p)
coords = [np.random.randint(0, i - 1, int(num_salt))
for i in image_np.shape]
coords[2] = np.random.randint(0, 3, int(num_salt))
params.append(copy.deepcopy(coords))
# Generate Pepper '0' noise
num_pepper = np.ceil(amount * image_np.size * (1. - s_vs_p))
coords = [np.random.randint(0, i - 1, int(num_pepper))
for i in image_np.shape]
params.append(copy.deepcopy(coords))
return params
elif self.noise_type == "poisson":
noisy = np.random.poisson(image_np)
params.append(noisy)
return params
elif self.noise_type == "speckle":
factor = random.uniform(0.01, 0.4)
gauss = np.random.randn(row, col, ch)
gauss = gauss.reshape(row, col, ch) * factor
params.append(gauss)
return params
elif self.noise_type == "band":
smaller_dim = min(col, row)
num_bands = random.randrange(smaller_dim // 2, smaller_dim)
scale = random.uniform(1.0, 10.0)
offset = np.zeros(image_np.shape).astype(np.float64)
# horizontal branding
num_list = list(range(image.width)) # list of integers from 0 to image width-1
# adjust this boundaries to fit your needs
random.shuffle(num_list)
horizontal_bands = num_list[:num_bands]
for w in horizontal_bands:
offset[w, :, :] += random.uniform(-1, 1) * scale
# vertical branding
num_list = list(range(image.height)) # list of integers from 0 to image height-1
# adjust this boundaries to fit your needs
random.shuffle(num_list)
vertical_bands = num_list[:num_bands]
for h in vertical_bands:
offset[:, h, :] += random.uniform(-1, 1) * scale
params.append(offset)
return params
else:
return params
def apply(self, image, params):
"""
image: ndarray (input image data. It will be converted to float)
"""
if params is None:
return image
image_np = np.array(image)
if self.noise_type == "gauss":
gauss = params[0]
noisy = image_np + image_np * gauss
noisy = np.clip(noisy, 0, 255)
return Image.fromarray(noisy.astype('uint8'))
elif self.noise_type == "s&p":
out = image_np
# Generate Salt '1' noise
coords = params[0]
out[tuple(coords)] = 255
# Generate Pepper '0' noise
coords = params[1]
out[tuple(coords)] = 0
out = np.clip(out, 0, 255)
return Image.fromarray(out.astype('uint8'))
elif self.noise_type == "poisson":
noisy = params[0]
noisy = np.clip(noisy, 0, 255)
return Image.fromarray(noisy.astype('uint8'))
elif self.noise_type == "speckle":
gauss = params[0]
noisy = image_np + image_np * gauss
noisy = np.clip(noisy, 0, 255)
return Image.fromarray(noisy.astype('uint8'))
elif self.noise_type == "band":
offset = params[0]
noisy = image_np + offset
noisy = np.clip(noisy, 0, 255)
return Image.fromarray(noisy.astype('uint8'))
else:
return image
def __call__(self, input1, input2):
params = self.get_params(input1)
output1 = self.apply(input1, params)
output2 = check_input_type_perform_action(input2, Image.Image, self.apply, params)
return output1, output2
class MakePower2:
def __init__(self, base, method=Image.BICUBIC):
self.base = base
self.method = method
self.print_size_warning = PrintSizeWarning()
def apply(self, img):
ow, oh = img.size
h = int(round(oh / self.base) * self.base)
w = int(round(ow / self.base) * self.base)
if h == oh and w == ow:
return img
self.print_size_warning(ow, oh, w, h)
return img.resize((w, h), self.method)
def __call__(self, input1, input2):
output1 = self.apply(input1)
output2 = check_input_type_perform_action(input2, Image.Image, self.apply)
return output1, output2
class RandomHorizontalFlip(object):
"""Horizontally flip the given PIL Image randomly with a given probability.
Args:
p (float): probability of the image being flipped. Default value is 0.5
"""
def __init__(self, p=0.5):
self.p = p
def get_params(self):
if random.random() < self.p:
return True
else:
return False
def __call__(self, input1, input2):
flip = self.get_params()
if flip:
output1 = F.hflip(input1)
output2 = check_input_type_perform_action(input2, Image.Image, F.hflip)
else:
output1, output2 = input1, input2
return output1, output2
class Flip:
def __init__(self, flip):
self.flip = flip
def transpose(self, input):
return input.transpose(Image.FLIP_LEFT_RIGHT)
def __call__(self, input1, input2):
if self.flip:
output1 = input1.transpose(Image.FLIP_LEFT_RIGHT)
output2 = check_input_type_perform_action(input2, Image.Image, self.transpose)
else:
output1, output2 = input1, input2
return output1, output2
class ToTensor(object):
"""Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
Converts a PIL Image or numpy.ndarray (H x W x C) in the range
[0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
or if the numpy.ndarray has dtype = np.uint8
In the other cases, tensors are returned without scaling.
"""
def __call__(self, input1, input2):
output1 = F.to_tensor(input1)
output2 = check_input_type_perform_action(input2, None, F.to_tensor)
return output1, output2
class Normalize(object):
"""Normalize a tensor image with mean and standard deviation.
Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform
will normalize each channel of the input ``torch.*Tensor`` i.e.
``output[channel] = (input[channel] - mean[channel]) / std[channel]``
.. note::
This transform acts out of place, i.e., it does not mutate the input tensor.
Args:
mean (sequence): Sequence of means for each channel.
std (sequence): Sequence of standard deviations for each channel.
inplace(bool,optional): Bool to make this operation in-place.
"""
def __init__(self, first_input_mean, first_input_std, second_input_mean=None, second_input_std=None, inplace=False):
self.first_input_mean = first_input_mean
self.first_input_std = first_input_std
self.second_input_mean = second_input_mean if second_input_mean is not None else first_input_mean
self.second_input_std = second_input_std if second_input_std is not None else first_input_std
self.inplace = inplace
def __call__(self, tensor1, tensor2):
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
Returns:
Tensor: Normalized Tensor image.
"""
output1 = F.normalize(tensor1, self.first_input_mean, self.first_input_std, self.inplace)
output2 = check_input_type_perform_action(tensor2, None, F.normalize, self.second_input_mean, self.second_input_std, self.inplace)
return output1, output2
class PrintSizeWarning:
def __init__(self):
self.has_printed = False
def __call__(self, ow, oh, w, h):
if not self.has_printed:
print("The image size needs to be a multiple of 4. "
"The loaded image size was (%d, %d), so it was adjusted to "
"(%d, %d). This adjustment will be done to all images "
"whose sizes are not multiples of 4" % (ow, oh, w, h))
self.has_printed = True
class ImagePathToImage:
"""Convert an image path to an image.
Parameters:
filename -- the input file path.
"""
def load_img(self, path):
return Image.open(path).convert('RGB')
def __call__(self, filename1, filename2):
img1 = self.load_img(filename1)
img2 = check_input_type_perform_action(filename2, None, self.load_img)
return img1, img2
class NumpyToTensor:
"""Convert a numpy array to a tensor.
Parameters:
filename -- the input file path.
"""
def load_numpy(self, filename):
npy = np.load(filename)
if isinstance(npy, np.lib.npyio.NpzFile):
npy = npy['data']
if len(npy.shape) == 2:
npy = np.tile(npy, (1, 1, 1))
else:
npy = np.transpose(npy, (2, 0, 1))
return torch.from_numpy(npy).float()
def __call__(self, filename1, filename2):
tensor1 = self.load_numpy(filename1)
tensor2 = check_input_type_perform_action(filename2, None, self.load_numpy)
return tensor1, tensor2