MMFS / models /base_model.py
limoran
add basic files
7e2a2a5
raw
history blame
15.9 kB
import os
import torch
from collections import OrderedDict
from abc import ABC, abstractmethod
from models.modules import networks
from utils.util import check_path
from utils.net_size import calc_computation
class BaseModel(ABC):
"""This class is an abstract base class (ABC) for models.
To create a subclass, you need to implement the following five functions:
-- <__init__>: initialize the class; first call BaseModel.__init__(self, opt).
-- <set_input>: unpack data from dataset and apply preprocessing.
-- <forward>: produce intermediate results.
-- <optimize_parameters>: calculate losses, gradients, and update network weights.
-- <modify_commandline_options>: (optionally) add model-specific options and set default options.
"""
def __init__(self, config, DDP_device=None):
"""Initialize the BaseModel class.
Parameters:
opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
When creating your custom class, you need to implement your own initialization.
In this function, you should first call <BaseModel.__init__(self, opt)>
Then, you need to define four lists:
-- self.loss_names (str list): specify the training losses that you want to plot and save.
-- self.model_names (str list): define networks used in our training.
-- self.visual_names (str list): specify the images that you want to display and save.
-- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example.
"""
self.config = config
self.gpu_ids = config['common']['gpu_ids']
self.isTrain = config['common']['phase'] == 'train'
if DDP_device is None:
self.device = torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') # get device name: CPU or GPU
self.DDP_device = None
self.on_cpu = (self.device.type == 'cpu')
else:
self.device = DDP_device
self.DDP_device = DDP_device
self.on_cpu = False
self.save_dir = os.path.join(config['training']['checkpoints_dir'], config['common']['name']) # save all the checkpoints to save_dir
if config['dataset']['preprocess'] != 'scale_width': # with [scale_width], input images might have different sizes, which hurts the performance of cudnn.benchmark.
torch.backends.cudnn.benchmark = True
self.loss_names = []
self.model_names = []
self.visual_names = []
self.optimizers = []
self.image_paths = []
self.metric = 0 # used for learning rate policy 'plateau'
self.curr_epoch = 0
self.total_iters = 0
self.best_val_loss = 999999
@abstractmethod
def set_input(self, input):
"""Unpack input data from the dataloader and perform necessary pre-processing steps.
Parameters:
input (dict): includes the data itself and its metadata information.
"""
pass
@abstractmethod
def forward(self):
"""Run forward pass; called by both functions <configimize_parameters> and <test>."""
pass
@abstractmethod
def trace_jit(self, input):
"""trace torchscript model for C++. Called by <trace_jit.py>"""
pass
@abstractmethod
def optimize_parameters(self):
"""Calculate losses, gradients, and update network weights; called in every training iteration"""
pass
@abstractmethod
def eval_step(self):
"""Forward and backward pass but without upgrading weights; called in every validation iteration"""
pass
def setup(self, config, DDP_device=None):
"""Load and print networks; create schedulers
Parameters:
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
"""
if self.isTrain:
self.schedulers = [networks.get_scheduler(optimizer, config) for optimizer in self.optimizers]
if not self.isTrain:
load_suffix = '{}'.format(config['testing']['which_epoch'])
self.load_networks(load_suffix)
elif config['training']['continue_train']:
load_suffix = '{}'.format(config['training']['which_epoch'])
self.load_networks(load_suffix)
self.print_networks(config['common']['verbose'], DDP_device=DDP_device)
def eval(self):
"""Make models eval mode during test time"""
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, 'net' + name)
net.eval()
def train(self):
"""Make models train mode during train time"""
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, 'net' + name)
net.train()
def test(self):
"""Forward function used in test time.
This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop
It also calls <compute_visuals> to produce additional visualization results
"""
with torch.no_grad():
self.forward()
self.compute_visuals()
def compute_visuals(self):
"""Calculate additional output images for visdom and HTML visualization"""
pass
def get_image_paths(self):
""" Return image paths that are used to load current data"""
return self.image_paths
def update_learning_rate(self):
"""Update learning rates for all the networks; called at the end of every epoch"""
for scheduler in self.schedulers:
if self.config['training']['lr_policy'] == 'plateau':
scheduler.step(self.metric, epoch=self.curr_epoch)
else:
scheduler.step(epoch=self.curr_epoch)
# lr = self.optimizers[0].param_groups[0]['lr']
# print('learning rate = %.7f' % lr)
def get_current_visuals(self):
"""Return visualization images. train.py will display these images with visdom, and save the images to a HTML"""
if not self.isTrain and len(self.config['testing']['visual_names']) > 0:
visual_names = list(set(self.visual_names).intersection(set(self.config['testing']['visual_names'])))
else:
visual_names = self.visual_names
visual_ret = OrderedDict()
for name in visual_names:
if isinstance(name, str):
visual_ret[name] = getattr(self, name)
return visual_ret
def get_current_losses(self):
"""Return traning losses / errors. train.py will print out these errors on console, and save them to a file"""
errors_ret = OrderedDict()
for name in self.loss_names:
if isinstance(name, str):
errors_ret[name] = float(getattr(self, 'loss_' + name)) # float(...) works for both scalar tensor and float number
return errors_ret
def save_networks(self, epoch, val_loss=None):
"""Save all the networks to the disk.
Parameters:
epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name)
"""
check_path(self.save_dir)
save_filename = 'epoch_%s.pth' % epoch if val_loss is None else 'best_val_epoch.pth'
checkpoint = {}
# save all the models
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, 'net' + name)
if len(self.gpu_ids) > 0 and torch.cuda.is_available():
# if use DDP, save only on rank 0. If using dataparallel, second condition meets.
if self.DDP_device == 0 or self.DDP_device is None:
checkpoint[name+'_model'] = net.module.state_dict()
else:
checkpoint[name+'_model'] = net.state_dict()
# save all the optimizers
optimizer_index = 0
for optimizer in self.optimizers:
checkpoint['optimizer_'+str(optimizer_index)] = optimizer.state_dict()
optimizer_index += 1
# save all the schedulers
scheduler_index = 0
for scheduler in self.schedulers:
checkpoint['scheduler_' + str(scheduler_index)] = scheduler.state_dict()
scheduler_index += 1
# save other information
checkpoint['epoch'] = self.curr_epoch
checkpoint['total_iters'] = self.total_iters
checkpoint['metric'] = self.metric
if val_loss is not None:
checkpoint['best_val_loss'] = val_loss
torch.save(checkpoint, os.path.join(self.save_dir, save_filename))
def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0):
"""Fix InstanceNorm checkpoints incompatibility (prior to 0.4)"""
key = keys[i]
if i + 1 == len(keys): # at the end, pointing to a parameter/buffer
if module.__class__.__name__.startswith('InstanceNorm') and \
(key == 'running_mean' or key == 'running_var'):
if getattr(module, key) is None:
state_dict.pop('.'.join(keys))
if module.__class__.__name__.startswith('InstanceNorm') and \
(key == 'num_batches_tracked'):
state_dict.pop('.'.join(keys))
else:
self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1)
def load_networks(self, epoch, ckpt=None):
"""Load all the networks from the disk.
Parameters:
epoch (str) -- current epoch; used in the file name 'epoch_%s.pth' % epoch. Models in the old format
with the names '%s_net_%s.pth' % (epoch, name) are also supported. Models in the new format takes priority.
"""
load_filename = 'epoch_%s.pth' % epoch
if ckpt is None:
final_load_path = os.path.join(self.save_dir, load_filename)
else:
final_load_path = ckpt
if os.path.exists(final_load_path):
# new checkpoint format.
print('loading the model in new format from %s' % final_load_path)
if self.DDP_device is not None:
# unpack the tensors on GPU 0, then transfer to whatever device it needs to be on
map_location = {'cuda:%d' % 0: 'cuda:%d' % self.DDP_device}
checkpoint = torch.load(final_load_path, map_location=map_location)
else:
checkpoint = torch.load(final_load_path)
for k, v in checkpoint.items():
# load models
if 'model' in k:
name = k.split('_model')[0]
if not self.isTrain and 'D' in name: # does not load discriminator when not training
continue
if not hasattr(self, 'net' + name):
continue
net = getattr(self, 'net' + name)
if isinstance(net, torch.nn.DataParallel) or isinstance(net, torch.nn.parallel.DistributedDataParallel):
net = net.module
# if you are using PyTorch newer than 0.4 (e.g., built from
# GitHub source), you can remove str() on self.device
if hasattr(v, '_metadata'):
del v._metadata
# patch InstanceNorm checkpoints prior to 0.4
for key in list(v.keys()): # need to copy keys here because we mutate in loop
self.__patch_instance_norm_state_dict(v, net, key.split('.'))
net.load_state_dict(v)
# load optimizers
elif 'optimizer' in k:
if not self.isTrain:
continue
index = int(k.split('_')[-1])
self.optimizers[index].load_state_dict(v)
# load schedulers
elif 'scheduler' in k:
if not self.isTrain:
continue
index = int(k.split('_')[-1])
self.schedulers[index].load_state_dict(v)
# load other stuffs
elif k == 'epoch':
self.curr_epoch = int(v) + 1
elif k == 'total_iters':
self.total_iters = int(v)
elif k == 'metric':
self.metric = float(v)
elif k == 'best_val_loss':
self.best_val_loss = float(v)
else:
print('Checkpoint load error. Unrecognized parameter saved in checkpoint: ', k)
return
# old checkpoint format.
for name in self.model_names:
if isinstance(name, str):
load_filename = '%s_net_%s.pth' % (epoch, name)
load_path = os.path.join(self.save_dir, load_filename)
net = getattr(self, 'net' + name)
if isinstance(net, torch.nn.DataParallel) or isinstance(net, torch.nn.parallel.DistributedDataParallel):
net = net.module
print('loading the model from %s' % load_path)
# if you are using PyTorch newer than 0.4 (e.g., built from
# GitHub source), you can remove str() on self.device
state_dict = torch.load(load_path, map_location=str(self.device))
if hasattr(state_dict, '_metadata'):
del state_dict._metadata
# patch InstanceNorm checkpoints prior to 0.4
for key in list(state_dict.keys()): # need to copy keys here because we mutate in loop
self.__patch_instance_norm_state_dict(state_dict, net, key.split('.'))
net.load_state_dict(state_dict)
def print_networks(self, verbose, DDP_device=None):
"""Print the total number of parameters in the network and (if verbose) network architecture
Parameters:
verbose (bool) -- if verbose: print the network architecture
"""
if DDP_device is None or DDP_device == 0:
print('---------- Networks initialized -------------')
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, 'net' + name)
num_params = 0
for param in net.parameters():
num_params += param.numel()
if verbose:
print(net)
print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6))
if 'G' in name:
calc_computation(net, self.config['model']['input_nc'], self.config['dataset']['crop_size'],self.config['dataset']['crop_size'], DDP_device=DDP_device)
print('-----------------------------------------------')
def set_requires_grad(self, nets, requires_grad=False):
"""Set requies_grad=Fasle for all the networks to avoid unnecessary computations
Parameters:
nets (network list) -- a list of networks
requires_grad (bool) -- whether the networks require gradients or not
"""
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad