Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.nn.utils.parametrize as parametrize | |
from dataclasses import dataclass | |
from typing import Optional, List | |
import math | |
import torch.utils.checkpoint as checkpoint | |
class GemmaConfig: | |
hidden_size: int = 2048 | |
intermediate_size: int = 16384 | |
num_attention_heads: int = 8 | |
num_hidden_layers: int = 18 | |
num_image_tokens: int = 256 | |
num_key_value_heads: int = 1 | |
vocab_size: int = 257216 | |
norm_eps: float = 1e-6 | |
max_seq_len: int = 8192 | |
attention_dropout: float = 0.0 | |
use_lora: bool = False | |
training: bool = False | |
def from_dict(cls, data): | |
return cls( | |
hidden_size = data['hidden_size'], | |
intermediate_size = data['intermediate_size'], | |
num_attention_heads = data['num_attention_heads'], | |
num_hidden_layers = data['num_hidden_layers'], | |
num_image_tokens = data['num_image_tokens'], | |
num_key_value_heads = data['num_key_value_heads'], | |
vocab_size = data['vocab_size'], | |
training = data['training']) | |
class RMSNorm(nn.Module): | |
def __init__(self, dim: int, norm_eps: float = 1e-6): | |
super().__init__() | |
self.weight = nn.Parameter(torch.zeros(dim)) | |
self.norm_eps = norm_eps | |
def _norm(self, x): | |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.norm_eps) | |
def forward(self, x: torch.Tensor): | |
output = self._norm(x.float()) | |
output = output * (1.0 + self.weight.float()) | |
return output.type_as(x) | |
def precompute_freqs(head_dim: int, max_seq_len: int, theta: int = 10000): | |
thetas = 1 / (theta ** (torch.arange(0, head_dim, 2, dtype=torch.int64).float() / head_dim)) | |
m = torch.arange(max_seq_len, dtype=torch.long) | |
# (max_seq_len, head_dim // 2) | |
freqs = torch.outer(m, thetas) | |
# (max_seq_len, head_dim // 2) -> (max_seq_len, head_dim) | |
freqs = torch.cat((freqs, freqs), dim=-1) | |
return freqs | |
def roate_half(x: torch.Tensor): | |
x1 = x[..., :x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2:] | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_rotary_embed(x: torch.Tensor, | |
freqs: torch.Tensor): | |
# x: (n, n_heads, seq_len, head_dim) | |
# freqs: (n, seq_len, head_dim) | |
device_type = x.device.type | |
device_type = device_type if device_type != 'mps' else 'cpu' | |
with torch.autocast(device_type=device_type, enabled=False): | |
cos = freqs.cos() | |
sin = freqs.sin() | |
while len(cos.shape) < len(x.shape): | |
cos = cos.unsqueeze(1) | |
sin = sin.unsqueeze(1) | |
cos = cos.to(x.dtype) | |
sin = sin.to(x.dtype) | |
x = (x * cos) + (roate_half(x) * sin) | |
return x | |
class KVCache: | |
def __init__(self): | |
self.cache_k: List[torch.Tensor] = [] | |
self.cache_v: List[torch.Tensor] = [] | |
def num_items(self): | |
if len(self.cache_k) == 0: | |
return 0 | |
else: | |
# (n, num_heads, seq_len, head_dim) | |
return self.cache_k[0].shape[-2] | |
def update(self, xk, xv, layer_idx): | |
if layer_idx < len(self.cache_k): | |
self.cache_k[layer_idx] = torch.cat((self.cache_k[layer_idx], xk), dim=-2) | |
self.cache_v[layer_idx] = torch.cat((self.cache_v[layer_idx], xv), dim=-2) | |
else: | |
self.cache_k.append(xk) | |
self.cache_v.append(xv) | |
return self.cache_k[layer_idx], self.cache_v[layer_idx] | |
class GemmaTransformerAttention(nn.Module): | |
def __init__(self, cfg: GemmaConfig, layer_idx: int): | |
super().__init__() | |
self.cfg = cfg | |
self.layer_idx = layer_idx | |
self.vocab_size = cfg.vocab_size | |
self.hidden_size = cfg.hidden_size | |
self.num_attention_heads = cfg.num_attention_heads | |
self.num_key_value_heads = cfg.num_key_value_heads | |
self.max_seq_len = cfg.max_seq_len | |
assert self.hidden_size % self.num_attention_heads == 0 | |
self.n_rep =self.num_attention_heads // self.num_key_value_heads | |
self.head_dim = self.hidden_size // self.num_attention_heads | |
self.q_proj = nn.Linear(self.hidden_size, self.num_attention_heads * self.head_dim, bias=False) | |
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) | |
self.attn_dropout = cfg.attention_dropout | |
self.training = cfg.training | |
self.register_buffer('freqs', | |
precompute_freqs(self.head_dim, cfg.max_seq_len), | |
persistent=False) | |
def forward(self, x: torch.Tensor, | |
position_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
kv_cache: Optional[KVCache] = None): | |
batch_size, seq_len, embed_dim = x.shape | |
xq = self.q_proj(x) | |
xk = self.k_proj(x) | |
xv = self.v_proj(x) | |
# (n, seq_len, hidden_size) -> (n, seq_len, num_heads, head_dim) -> (n, num_heads, seq_len, head_dim) | |
xq = xq.view(batch_size, seq_len, self.num_attention_heads, self.head_dim).transpose(1, 2) | |
# (n, seq_len, hidden_size) -> (n, seq_len, num_kv_heads, head_dim) -> (n, num_kv_heads, seq_len, head_dim) | |
xk = xk.view(batch_size, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
xv = xv.view(batch_size, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
xq = apply_rotary_embed(xq, self.freqs[position_ids, :]) | |
xk = apply_rotary_embed(xk, self.freqs[position_ids, :]) | |
if kv_cache is not None: | |
keys, values = kv_cache.update(xk, xv, self.layer_idx) | |
else: | |
keys, values = xk, xv | |
# (n, num_kv_heads, seq_len, head_dim) -> (n, num_kv_heads * n_rep, seq_len, head_dim) -> (n, num_heads, seq_len, head_dim) | |
keys = keys[:, :, None, :, :].expand(-1, -1, self.n_rep, -1, -1).view(batch_size, -1, keys.shape[-2], self.head_dim) | |
values = values[:, :, None, :, :].expand(-1, -1, self.n_rep, -1, -1).view(batch_size, -1, keys.shape[-2], self.head_dim) | |
assert attention_mask is not None | |
# (n, num_heads, seq_len, head_dim) @ (n, num_heads, head_dim, seq_len) -> (n, num_heads, seq_len, seq_len) | |
attn_weights = torch.softmax(xq @ keys.transpose(2, 3) / math.sqrt(self.head_dim) + attention_mask, dim=-1) | |
# dropout when training | |
attn_weights = F.dropout(attn_weights, p=self.attn_dropout, training=self.training) | |
# (n, num_heads, seq_len, seq_len) @ (n, num_heads, seq_len, head_dim) -> (n, num_heads, seq_len, head_dim) | |
attn_output = attn_weights @ values | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.view(*x.shape) | |
attn_output = self.o_proj(attn_output) | |
return attn_output, attn_weights | |
class GemmaTransformerMLP(nn.Module): | |
def __init__(self, cfg: GemmaConfig): | |
super().__init__() | |
self.cfg = cfg | |
self.down_proj = nn.Linear(cfg.intermediate_size, cfg.hidden_size, bias=False) | |
self.gate_proj = nn.Linear(cfg.hidden_size, cfg.intermediate_size, bias=False) | |
self.up_proj = nn.Linear(cfg.hidden_size, cfg.intermediate_size, bias=False) | |
def forward(self, x: torch.Tensor): | |
return self.down_proj(F.gelu(self.gate_proj(x), approximate="tanh") * self.up_proj(x)) | |
class GemmaTransformerDecoder(nn.Module): | |
def __init__(self, cfg: GemmaConfig, layer_idx: int) -> None: | |
super().__init__() | |
self.cfg = cfg | |
self.input_layernorm = RMSNorm(cfg.hidden_size, cfg.norm_eps) | |
self.self_attn = GemmaTransformerAttention(cfg, layer_idx) | |
self.mlp = GemmaTransformerMLP(cfg) | |
self.post_attention_layernorm = RMSNorm(cfg.hidden_size, cfg.norm_eps) | |
self.gradient_checking = False | |
def forward(self, x: torch.Tensor, | |
position_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
kv_cache: Optional[KVCache] = None): | |
residual = x | |
x = self.input_layernorm(x) | |
if self.gradient_checking: | |
x = checkpoint.checkpoint(self.self_attn, x, position_ids, attention_mask, kv_cache) | |
else: | |
x = self.self_attn(x, | |
position_ids, | |
attention_mask, | |
kv_cache)[0] | |
x += residual | |
residual = x | |
x = self.post_attention_layernorm(x) | |
x = residual + self.mlp(x) | |
return x | |
class GemmaModel(nn.Module): | |
def __init__(self, cfg: GemmaConfig) -> None: | |
super().__init__() | |
self.cfg = cfg | |
self.embed_tokens = nn.Embedding(cfg.vocab_size, cfg.hidden_size) | |
self.layers = nn.ModuleList( | |
[GemmaTransformerDecoder(cfg, layer_idx) for layer_idx in range(cfg.num_hidden_layers)] | |
) | |
self.norm = RMSNorm(cfg.hidden_size, cfg.norm_eps) | |
def forward(self, x: torch.Tensor, | |
position_ids: Optional[torch.Tensor], | |
attention_mask: Optional[torch.Tensor], | |
kv_cache: Optional[KVCache]) -> torch.Tensor: | |
output = x * torch.tensor(self.cfg.hidden_size ** 0.5, dtype=x.dtype) | |
for layer in self.layers: | |
output = layer(output, | |
position_ids, | |
attention_mask, | |
kv_cache) | |
output = self.norm(output) | |
return output | |
class Gemma(nn.Module): | |
def __init__(self, cfg: GemmaConfig) -> None: | |
super().__init__() | |
self.cfg = cfg | |
self.model = GemmaModel(cfg) | |
self.vocab_size = cfg.vocab_size | |
self.lm_head = nn.Linear(cfg.hidden_size, cfg.vocab_size, bias=False) | |
def gradient_checkpointing_enabled(self, enabled=False): | |
for name, module in self.model.named_modules(): | |
if isinstance(module, GemmaTransformerDecoder): | |
module.gradient_checking = enabled | |
def tie_weights(self): | |
self.lm_head.weight = self.model.embed_tokens.weight | |
def forward(self, | |
input_embeds: torch.Tensor, | |
position_ids: Optional[torch.Tensor], | |
attention_mask: Optional[torch.Tensor], | |
kv_cache: Optional[KVCache]): | |
output = self.model(input_embeds, | |
position_ids, | |
attention_mask, | |
kv_cache) | |
return output, kv_cache |