Spaces:
Running
Running
# create_dataloaders.py | |
import logging | |
from torch.utils.data import DataLoader | |
from transformer_model.scripts.utils.informer_dataset_class import InformerDataset | |
from transformer_model.scripts.config_transformer import BATCH_SIZE, FORECAST_HORIZON | |
from momentfm.utils.utils import control_randomness | |
def create_dataloaders(): | |
logging.info("Setting random seeds...") | |
control_randomness(seed=13) | |
logging.info("Loading training dataset...") | |
train_dataset = InformerDataset(data_split="train", random_seed=13, forecast_horizon=FORECAST_HORIZON) | |
logging.info("Train set loaded — Samples: %d | Features: %d", len(train_dataset), train_dataset.n_channels) | |
logging.info("Loading test dataset...") | |
test_dataset = InformerDataset(data_split="test", random_seed=13, forecast_horizon=FORECAST_HORIZON) | |
logging.info("Test set loaded — Samples: %d | Features: %d", len(test_dataset), test_dataset.n_channels) | |
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True) | |
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True) | |
logging.info("Dataloaders created successfully.") | |
return train_loader, test_loader | |
if __name__ == "__main__": | |
create_dataloaders() | |