# create_dataloaders.py import logging from torch.utils.data import DataLoader from transformer_model.scripts.utils.informer_dataset_class import InformerDataset from transformer_model.scripts.config_transformer import BATCH_SIZE, FORECAST_HORIZON from momentfm.utils.utils import control_randomness def create_dataloaders(): logging.info("Setting random seeds...") control_randomness(seed=13) logging.info("Loading training dataset...") train_dataset = InformerDataset(data_split="train", random_seed=13, forecast_horizon=FORECAST_HORIZON) logging.info("Train set loaded — Samples: %d | Features: %d", len(train_dataset), train_dataset.n_channels) logging.info("Loading test dataset...") test_dataset = InformerDataset(data_split="test", random_seed=13, forecast_horizon=FORECAST_HORIZON) logging.info("Test set loaded — Samples: %d | Features: %d", len(test_dataset), test_dataset.n_channels) train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True) logging.info("Dataloaders created successfully.") return train_loader, test_loader if __name__ == "__main__": create_dataloaders()