Spaces:
Running
Running
# eval_model.py | |
import os | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import pickle | |
from sklearn.metrics import mean_absolute_error, mean_squared_error | |
from lightgbm_model.scripts.config_lightgbm import RESULTS_DIR, MODEL_DIR, DATA_PATH | |
from joblib import load | |
# === Ergebnisse-Ordner vorbereiten === | |
os.makedirs(RESULTS_DIR, exist_ok=True) | |
# === Modell und eval_result laden === | |
# Modell laden | |
with open(os.path.join(MODEL_DIR, "lightgbm_final_model.pkl"), "rb") as f: | |
model = pickle.load(f) | |
# Eval laden | |
with open(os.path.join(RESULTS_DIR, "lightgbm_eval_result.pkl"), "rb") as f: | |
eval_result = pickle.load(f) | |
X_train = pd.read_csv(os.path.join(RESULTS_DIR, "X_train.csv")) | |
X_test = pd.read_csv(os.path.join(RESULTS_DIR, "X_test.csv")) | |
y_test = pd.read_csv(os.path.join(RESULTS_DIR, "y_test.csv")) | |
# === Lernkurve === | |
train_rmse = eval_result['training']['rmse'] | |
valid_rmse = eval_result['valid_1']['rmse'] | |
plt.figure(figsize=(10, 5)) | |
plt.plot(train_rmse, label='Train RMSE') | |
plt.plot(valid_rmse, label='Valid RMSE') | |
plt.axvline(model.best_iteration_, color='gray', linestyle='--', label='Best Iteration') | |
plt.xlabel("Boosting Round") | |
plt.ylabel("RMSE") | |
plt.title("LightGBM Learning Curve") | |
plt.legend() | |
plt.tight_layout() | |
plt.savefig(os.path.join(RESULTS_DIR, "lightgbm_learning_curve.png")) | |
#plt.show() | |
# === Metriken berechnen === | |
y_pred = model.predict(X_test) | |
mae = mean_absolute_error(y_test, y_pred) | |
rmse = np.sqrt(mean_squared_error(y_test, y_pred)) | |
mape = np.mean(np.abs((y_test.values.flatten() - y_pred) / np.where(y_test.values.flatten() == 0, 1e-10, y_test.values.flatten()))) * 100 | |
print(f"Test MAPE: {mape:.5f} %") | |
print(f"Test MAE: {mae:.5f}") | |
print(f"Test RMSE: {rmse:.5f}") | |
# === Feature Importance === | |
feature_importance = pd.DataFrame({ | |
"Feature": X_train.columns, | |
"Importance": model.feature_importances_ | |
}).sort_values(by="Importance", ascending=False) | |
plt.figure(figsize=(10, 6)) | |
plt.barh(feature_importance["Feature"], feature_importance["Importance"]) | |
plt.xlabel("Feature Importance") | |
plt.title("LightGBM Feature Importance") | |
plt.gca().invert_yaxis() | |
plt.tight_layout() | |
plt.savefig(os.path.join(RESULTS_DIR, "lightgbm_feature_importance.png")) | |
#plt.show() | |
# === Vergleichsplots === | |
results_df = pd.DataFrame({ | |
"True Consumption (MW)": y_test.values.flatten(), | |
"Predicted Consumption (MW)": y_pred | |
}) | |
# Timestamps anhängen | |
full_df = pd.read_csv(DATA_PATH) | |
test_dates = full_df.iloc[int(len(full_df)*0.8):]["date"].reset_index(drop=True) | |
results_df["Timestamp"] = pd.to_datetime(test_dates) | |
# Voller Plot | |
plt.figure(figsize=(15, 6)) | |
plt.plot(results_df["Timestamp"], results_df["True Consumption (MW)"], label="True", color="darkblue") | |
plt.plot(results_df["Timestamp"], results_df["Predicted Consumption (MW)"], label="Predicted", color="red", linestyle="--") | |
plt.title("Predicted vs True Consumption") | |
plt.xlabel("Timestamp") | |
plt.ylabel("Consumption (MW)") | |
plt.legend() | |
plt.tight_layout() | |
plt.savefig(os.path.join(RESULTS_DIR, "lightgbm_comparison_plot.png")) | |
#plt.show() | |
# Subset Plot | |
subset = results_df.iloc[:len(results_df) // 10] | |
plt.figure(figsize=(15, 6)) | |
plt.plot(subset["Timestamp"], subset["True Consumption (MW)"], label="True", color="darkblue") | |
plt.plot(subset["Timestamp"], subset["Predicted Consumption (MW)"], label="Predicted", color="red", linestyle="--") | |
plt.title("Predicted vs True (First decile)") | |
plt.xlabel("Timestamp") | |
plt.ylabel("Consumption (MW)") | |
plt.legend() | |
plt.tight_layout() | |
plt.savefig(os.path.join(RESULTS_DIR, "lightgbm_prediction_with_timestamp.png")) | |
#plt.show() | |
# === Ens message === | |
print("\nEvaluation completed.") | |
print(f"All Plots stored in:\n→ {RESULTS_DIR}") | |