# eval_model.py import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import pickle from sklearn.metrics import mean_absolute_error, mean_squared_error from lightgbm_model.scripts.config_lightgbm import RESULTS_DIR, MODEL_DIR, DATA_PATH from joblib import load # === Ergebnisse-Ordner vorbereiten === os.makedirs(RESULTS_DIR, exist_ok=True) # === Modell und eval_result laden === # Modell laden with open(os.path.join(MODEL_DIR, "lightgbm_final_model.pkl"), "rb") as f: model = pickle.load(f) # Eval laden with open(os.path.join(RESULTS_DIR, "lightgbm_eval_result.pkl"), "rb") as f: eval_result = pickle.load(f) X_train = pd.read_csv(os.path.join(RESULTS_DIR, "X_train.csv")) X_test = pd.read_csv(os.path.join(RESULTS_DIR, "X_test.csv")) y_test = pd.read_csv(os.path.join(RESULTS_DIR, "y_test.csv")) # === Lernkurve === train_rmse = eval_result['training']['rmse'] valid_rmse = eval_result['valid_1']['rmse'] plt.figure(figsize=(10, 5)) plt.plot(train_rmse, label='Train RMSE') plt.plot(valid_rmse, label='Valid RMSE') plt.axvline(model.best_iteration_, color='gray', linestyle='--', label='Best Iteration') plt.xlabel("Boosting Round") plt.ylabel("RMSE") plt.title("LightGBM Learning Curve") plt.legend() plt.tight_layout() plt.savefig(os.path.join(RESULTS_DIR, "lightgbm_learning_curve.png")) #plt.show() # === Metriken berechnen === y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) rmse = np.sqrt(mean_squared_error(y_test, y_pred)) mape = np.mean(np.abs((y_test.values.flatten() - y_pred) / np.where(y_test.values.flatten() == 0, 1e-10, y_test.values.flatten()))) * 100 print(f"Test MAPE: {mape:.5f} %") print(f"Test MAE: {mae:.5f}") print(f"Test RMSE: {rmse:.5f}") # === Feature Importance === feature_importance = pd.DataFrame({ "Feature": X_train.columns, "Importance": model.feature_importances_ }).sort_values(by="Importance", ascending=False) plt.figure(figsize=(10, 6)) plt.barh(feature_importance["Feature"], feature_importance["Importance"]) plt.xlabel("Feature Importance") plt.title("LightGBM Feature Importance") plt.gca().invert_yaxis() plt.tight_layout() plt.savefig(os.path.join(RESULTS_DIR, "lightgbm_feature_importance.png")) #plt.show() # === Vergleichsplots === results_df = pd.DataFrame({ "True Consumption (MW)": y_test.values.flatten(), "Predicted Consumption (MW)": y_pred }) # Timestamps anhängen full_df = pd.read_csv(DATA_PATH) test_dates = full_df.iloc[int(len(full_df)*0.8):]["date"].reset_index(drop=True) results_df["Timestamp"] = pd.to_datetime(test_dates) # Voller Plot plt.figure(figsize=(15, 6)) plt.plot(results_df["Timestamp"], results_df["True Consumption (MW)"], label="True", color="darkblue") plt.plot(results_df["Timestamp"], results_df["Predicted Consumption (MW)"], label="Predicted", color="red", linestyle="--") plt.title("Predicted vs True Consumption") plt.xlabel("Timestamp") plt.ylabel("Consumption (MW)") plt.legend() plt.tight_layout() plt.savefig(os.path.join(RESULTS_DIR, "lightgbm_comparison_plot.png")) #plt.show() # Subset Plot subset = results_df.iloc[:len(results_df) // 10] plt.figure(figsize=(15, 6)) plt.plot(subset["Timestamp"], subset["True Consumption (MW)"], label="True", color="darkblue") plt.plot(subset["Timestamp"], subset["Predicted Consumption (MW)"], label="Predicted", color="red", linestyle="--") plt.title("Predicted vs True (First decile)") plt.xlabel("Timestamp") plt.ylabel("Consumption (MW)") plt.legend() plt.tight_layout() plt.savefig(os.path.join(RESULTS_DIR, "lightgbm_prediction_with_timestamp.png")) #plt.show() # === Ens message === print("\nEvaluation completed.") print(f"All Plots stored in:\n→ {RESULTS_DIR}")