dibend's picture
Update app.py
c8d21d7 verified
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
import numpy as np
from datetime import datetime
# Fetch the latest data date from the CSV
df_sample = pd.read_csv('https://files.zillowstatic.com/research/public_csvs/zhvi/Zip_zhvi_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv', nrows=1)
latest_data_date_str = df_sample.columns[-1]
def plot_zip_code_correlation(zip_codes_str, start_date, end_date):
start_year = pd.to_datetime(start_date).year
end_year = pd.to_datetime(end_date).year
if start_year < 2000 or end_year < 2000:
raise ValueError("Please select dates no earlier than the year 2000.")
if start_year > end_year:
raise ValueError("Start date must be before end date.")
zip_codes = [z.strip().zfill(5) for z in zip_codes_str.split(",")]
df = pd.read_csv('https://files.zillowstatic.com/research/public_csvs/zhvi/Zip_zhvi_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv')
df['RegionName'] = df['RegionName'].astype(str).str.zfill(5)
df = df[df['RegionName'].isin(zip_codes)]
if df.empty:
raise ValueError("No data found for the provided ZIP codes.")
date_columns = [col for col in df.columns[7:] if start_date <= col <= end_date]
if not date_columns:
raise ValueError("No data available within the selected date range.")
price_matrix = []
valid_zip_list = []
for zip_code in zip_codes:
df_zip = df[df['RegionName'] == zip_code]
if not df_zip.empty:
prices = df_zip[date_columns].values.flatten()
if not np.isnan(prices).all():
price_matrix.append(prices)
valid_zip_list.append(zip_code)
if len(price_matrix) < 2:
raise ValueError("Not enough data for correlation calculation.")
price_matrix_df = pd.DataFrame(price_matrix, index=valid_zip_list, columns=date_columns).T.dropna()
corr_matrix = price_matrix_df.corr()
z_data = corr_matrix.values
x_data, y_data = np.meshgrid(valid_zip_list, valid_zip_list)
fig = go.Figure(data=[go.Surface(z=z_data, x=x_data, y=y_data)])
fig.update_layout(
title=f'3D Correlation Matrix of Housing Prices ({start_date} to {end_date})',
scene=dict(xaxis_title='ZIP Code', yaxis_title='ZIP Code', zaxis_title='Correlation'),
autosize=True
)
return fig
iface = gr.Interface(
fn=plot_zip_code_correlation,
inputs=[
gr.Textbox(label="Enter comma-separated ZIP codes (e.g., 07001,07002,07003)"),
gr.Textbox(label="Start Date (YYYY-MM-DD) - No earlier than 2000"),
gr.Textbox(label="End Date (YYYY-MM-DD) - No earlier than 2000")
],
outputs=gr.Plot(),
title="3D ZIP Code Housing Price Correlation Matrix",
description=f"""
## US Real Estate Zip ZHVI Price Movement Correlation Matrix Gen
Track housing price correlations by ZIP code to make informed decisions as a property owner or buyer.
**Data up to {latest_data_date_str}**. Enter ZIP codes below.
[Contact a real estate broker](https://micheled.com)
"""
)
iface.launch(share=False, debug=True)