import gradio as gr import pandas as pd import plotly.graph_objects as go import numpy as np def plot_zip_code_correlation(zip_codes_str, start_date, end_date): # Validate dates start_year = pd.to_datetime(start_date).year end_year = pd.to_datetime(end_date).year if start_year < 2000 or end_year < 2000: raise ValueError("Please select dates no earlier than the year 2000.") if start_year > end_year: raise ValueError("Start date must be before end date.") # Process ZIP codes (ensure 5-digit format) zip_codes = [z.strip().zfill(5) for z in zip_codes_str.split(",")] # Load data df = pd.read_csv('https://files.zillowstatic.com/research/public_csvs/zhvi/Zip_zhvi_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv') # Ensure ZIP codes in dataframe are strings with leading zeros df['RegionName'] = df['RegionName'].astype(str).str.zfill(5) df = df[df['RegionName'].isin(zip_codes)] if df.empty: raise ValueError("No data found for the provided ZIP codes.") # Extract date columns within the selected range date_columns = [] for col in df.columns[7:]: try: date = pd.to_datetime(col) if start_date <= str(date.date()) <= end_date: date_columns.append(col) except: continue if not date_columns: raise ValueError("No data available within the selected date range.") # Build price matrix price_matrix = [] valid_zip_list = [] for zip_code in zip_codes: df_zip = df[df['RegionName'] == zip_code] if not df_zip.empty: prices = df_zip.loc[:, date_columns].values.flatten() if not np.isnan(prices).all(): price_matrix.append(prices) valid_zip_list.append(zip_code) if len(price_matrix) < 2: raise ValueError(f"Not enough data for correlation calculation. Ensure at least two valid ZIP codes with overlapping data between {start_date} and {end_date}.") price_matrix_df = pd.DataFrame(price_matrix, index=valid_zip_list, columns=date_columns) price_matrix_df = price_matrix_df.T.dropna() # Calculate correlation matrix corr_matrix = price_matrix_df.corr() # Prepare 3D plot z_data = corr_matrix.values x_data, y_data = np.meshgrid(valid_zip_list, valid_zip_list) fig = go.Figure(data=[go.Surface(z=z_data, x=x_data, y=y_data)]) fig.update_layout( title=f'3D Correlation Matrix of Housing Prices ({start_date} to {end_date})', scene=dict( xaxis_title='ZIP Code', yaxis_title='ZIP Code', zaxis_title='Correlation', ), autosize=True ) return fig iface = gr.Interface( fn=plot_zip_code_correlation, inputs=[ gr.Textbox(label="Enter comma-separated ZIP codes (e.g., 07001,07002,07003)"), gr.Textbox(label="Start Date (YYYY-MM-DD) - No earlier than 2000"), gr.Textbox(label="End Date (YYYY-MM-DD) - No earlier than 2000") ], outputs=gr.Plot(), title="3D ZIP Code Housing Price Correlation Matrix" ) iface.launch(share=False, debug=True)